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Résumé en Français

Depuis l’apparition de la cryptographie moderne, le calcul sécurisé (MPC) a longuement été étudié.
Le MPC permet à un groupe de parties (ou joueurs) d’effectuer ensemble un ou plusieurs calculs sur
des données secrètes, tout en garantissant que les joueurs n’obtiennent rien de plus que le résultat et
ce qui peut en être déduit. Le développement massif de notre utilisation quotidienne d’Internet rend
le besoin de méthodes de calcul sécurisé plus urgent que jamais : les calculs sur des données privées
sont omniprésents, des algorithmes de recommandation aux enchères électroniques. Les algorithmes
de MPC modernes bénéficient grandement de l’apport d’aléa corrélé, afin d’obtenir des protocoles
rapides. Cet aléa corrélé doit être généré massivement au préalable pour que les protocoles de MPC
puissent être efficaces. Toutefois, réaliser cette génération d’aléa corrélé efficacement reste encore un
défi.

Dans cette thèse, nous étudions les Générateurs de Corrélations Pseudo-aléatoires (PCGs). Cette
primitive cryptographique transforme une petite quantité d’aléa corrélé en une large quantité de
pseudo-aléa corrélé, tout en étant efficace en ce qui concerne le temps de calcul et la communication.
Nous présentons différentes constructions de PCG dont la sécurité repose sur des variantes de
l’hypothèse de Décodage de Syndrome (SD), une hypothèse classique en théorie des codes. L’intuition
derrière les constructions proposées est de mélanger l’hypothèse SD avec certaines techniques de
MPC qui permettent de partager de manière additive des vecteurs creux. Nos résultats obtenus battent
l’état de l’art en ce qui concerne les protocoles de calcul sécurisé nécessitant plus de deux joueurs
lorsque le calcul est effectué sur un corps fini de taille > 2. Nous montrons également comment
supprimer cette contrainte au prix d’un léger surcoût en communication.

Nous considérons également la construction de Fonctions Pseudo-aléatoires Corrélées (PCFs).
Les PCFs produisent des corrélations à la volée : les joueurs détiennent chacun des fonctions corrélées
de sorte que les sorties des fonctions, lorsqu’elles sont évaluées sur la même entrée, soient corrélées.
Ces objets offrent plus de flexibilité que les PCGs, mais sont aussi plus difficiles à construire. Nous
nous appuyons à nouveau sur des variantes de SD pour construire des PCFs. Nous nous basons sur
une construction de PCF déjà établie, montrant que la preuve de sécurité associée était incorrecte, et
proposons une correction. De plus, nous présentons des optimisations de la construction, provenant
d’une meilleure analyse et d’un calcul précis des paramètres nécessaires via des simulations. Nous
obtenons des paramètres utilisables en pratique.

Cette thèse repose majoritairement sur l’hypothèse SD. La recherche d’une bonne complexité
implique des efforts pour trouver les codes les plus efficaces tout en garantissant que la sécurité ne
soit pas compromise. Nous considérons un modèle permettant l’étude de l’efficacité des attaques
prometteuses contre SD et ses variantes. Pour chaque construction mentionnée précédemment, nous
menons une analyse de sécurité approfondie de la variante associée de SD et tentons d’attaquer notre
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propre schéma pour calculer des paramètres concrets.
Mots Clés : Calcul Sécurisé, Correlation Pseudo-aléatoire, Théorie des Codes, Décodage de

Syndrome, Generateurs de Correlations Pseudo-aléatoires, Fonction Pseudo-aléatoire Correlées.



Abstract

Since the beginning of modern cryptography, the question of secure computation (MPC) has been
extensively studied. MPC allows for a set of parties to perform some joint computation while ensuring
that their input remains secure up to what is implied by the output. The massive development of our
daily Internet usage makes the need for secure computation methods more urgent : computations on
private data is everywhere, from recommendation algorithms to electronic auctions. Modern MPC
algorithms greatly benefit from correlated randomness to achieve fast online protocols. Correlated
randomness has to be massively produced beforehand for the MPC protocols to work best, and this
is still a challenge to do efficiently today.

In this thesis, we study pseudorandom correlation generators (PCGs). This construction trans-
forms small amount of correlated randomness into a large amount of correlated pseudorandomness
with minimal interaction and local computation. We present different PCG constructions whose
security relies on variants of the Syndrome Decoding (SD) assumption, a classical assumption in
coding-theory. The intuition behind these constructions is to merge the SD assumption with some
MPC techniques that enable additively sharing sparse vectors. We achieve state-of-the-art results
regarding secure computation protocols requiring more than two players when the computation is
over a finite field of size > 2. We show how to remove this constraint at the cost of a small overhead
in communication.

Next, we consider the construction of pseudorandom correlation functions (PCFs). PCFs produce
correlations on-the-fly : players each hold correlated functions such that the outputs of the functions,
when evaluated on the same entry, are correlated. These objects offer more flexibility than PCG,
but are also harder to construct. Again, we rely on variants of SD to construct PCFs. We build
on a previous PCF construction, showing that the associated proof of security was incorrect, and
propose a correction. Additionally, we present optimizations of the construction, coming from a
better analysis and precise optimization of parameters via simulations. We achieve parameters usable
in practice.

Finally, this thesis revolves around the use of certain codes, particularly the SD assumption. The
search of good complexity entails efforts to find the most efficient codes while ensuring that security
is not compromised. We consider a framework tailored to the study of promising attacks on SD and
its variants. For each construction previously mentioned, we conduct a thorough security analysis of
the associated variant of SD and attempt cryptanalysis efforts to compute concrete parameters.

Keyword : Secure Computation, Pseudorandom correlation, Coding Theory, Syndrome Decoding,
Pseudorandom Correlation Generator, Pseudorandom Correlation Function.



Résumé Substantiel en Français

Le Calcul Sécurisé

Garantir qu’un message puisse être envoyé sans qu’aucune tierce personne ne puisse le lire n’est
pas chose aisée. Ce problème, très naturel, a donné naissance à la cryptographie, que l’on pourrait
informellement surnommer “l’art du message secret”. La cryptographie utilise des outils mathéma-
tiques pour transformer un message en message chiffré, c’est-à-dire un message incompréhensible.
De la même manière qu’il faut que le destinataire et l’expéditeur possèdent tous les deux la même
clé pour ouvrir une boîte fermée par un verrou, la cryptographie suppose souvent que les deux
joueurs possèdent une clé commune (ou ayant un lien). L’expéditeur peut alors utiliser cette clé
pour chiffrer le message, le transformant en message chiffré. Le destinataire, grâce à sa propre clé,
peut alors déchiffrer le message chiffré et obtenir le message en clair. La force de la cryptographie
réside dans sa capacité à prouver que, sans clé, le message chiffré est bel et bien incompréhensible.
La cryptographie, dont l’utilisation est très ancienne, a connu une véritable révolution à partir des
années 1980, résultant de l’essor des ordinateurs et du développement d’Internet. Aujourd’hui, la
cryptographie fait partie intégrante de notre quotidien. Nous vivons dans un monde plutôt sécurisé
en ce qui concerne la communication de messages.

Toutefois, notre utilisation d’Internet va aujourd’hui bien au-delà de la simple communication
privée. Les sites utilisent de la publicité ciblée ou des algorithmes de recommandation : on peut par
exemple citer Netflix pour ses séries, YouTube pour ses vidéos, Facebook pour des recommandations
d’amis. Les applications citées plus haut nécessitent forcément l’utilisation de données personnelles.
Cette question des données personnelles est un point sensible. En effet, l’utilisateur ne réalise pas
forcément toujours que ses données ne sont plus privées. Il y a donc un paradoxe apparent : si d’une
part la population prend graduellement conscience de l’importance de ses données privées, la plupart
des utilisateurs acceptent de partager leurs données privées avec des entreprises en échange des
services qu’elles ont à proposer.

Mais la cryptographie n’a pas dit son dernier mot ! En effet, le calcul sécurisé (MPC) permet
justement à différents joueurs d’exécuter un algorithme sur des données privées tout en maintenant
cachées ces données durant l’exécution du protocole. Formellement, étant données des entrées
x1, . . . , xN avec N le nombre de joueurs impliqués dans le calcul, le MPC permet aux joueurs de
calculer une fonction f , de manière à ce qu’à la fin du protocole chaque joueur obtienne f(x1, . . . , xN ).
Le calcul sécurisé regorge d’applications, de la recommandation d’amis sur les réseaux sociaux aux
enchères électroniques en passant par des calculs statistiques sur des données sensibles, comme
par exemple des statistiques entre hôpitaux tout en préservant le secret médical. Toutefois, prouver
l’existence de protocoles réalisant toutes ces applications n’est pas suffisant : pour qu’un usage massif
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de calcul sécurisé sur Internet et sur les réseaux sociaux soit possible, les algorithmes de calcul
sécurisé doivent être efficaces. Ainsi, cette thèse a pour but de rendre utilisables en pratique les
algorithmes de MPC.

Techniques pour le Calcul Sécurisé
Dans cette thèse, nous nous concentrons sur une technique introduite par Goldreich, Micali et

Wigderson en 1987 : le protocole GMW [GMW87]. Supposons le cas du MPC à deux joueurs, disons
Alice et Bob. Ce protocole utilise massivement de l’aléa corrélé. Qu’est-ce que l’aléa corrélé? Nous
le définissons comme étant des valeurs additionnelles données à Alice et Bob telles qu’il existe une
relation entre leurs valeurs. Ces valeurs sont aléatoires sous condition de satisfaire cette relation (ou
corrélation). Un exemple fondateur de corrélation, et qui fut justement celui utilisé dans le cas du
protocole GMW, est le transfert inconscient (OT). Un transfert inconscient consiste à donner à Alice
un couple (x0, x1) de valeurs, et à Bob un bit de sélection b ainsi que la valeur xb correspondante.
Les garanties de sécurité sont les suivantes : Alice ne connaît pas la valeur de b ; Bob ne connaît pas
la valeur de x1−b. Le protocole GMW utilise classiquement deux transferts inconscients par porte ET
dans le circuit booléen. Il a été montré par Beaver en 1992 [Bea91] que ces transferts inconscients (ou
d’autres corrélations) pouvaient en réalité être précalculés, avant même le début du protocole. Ceci
a donné naissance à une vision du MPC en deux parties : une première phase de précalcul où les
joueurs génèrent l’aléa corrélé dont ils ont besoin. L’utilisation de l’aléa corrélé permet une deuxième
phase, dite phase en ligne, où les joueurs exécutent un protocole très rapide grâce à l’aléa corrélé.
Toutefois, un problème demeure : la quantité d’aléa corrélé requise pour un circuit donné est énorme,
car les fonctions que nous considérons peuvent facilement comporter des milliards de portes ET.
Étant donné qu’il n’est pas possible de réutiliser de l’aléa une fois celui-ci utilisé dans le protocole, la
production de l’aléa corrélé pose problème. Notons par ailleurs qu’une simple instance d’aléa corrélé
nécessite l’utilisation de cryptographie à clé publique, ce qui, étant donné le nombre d’appels que
nous devons faire, est simplement impossible.

C’est pour répondre à ce besoin qu’est née l’idée de Générateur de Corrélation Pseudo-aléatoire
(PCG). À l’origine, les OTs qui doivent être générés pour le protocole en ligne doivent être vraiment
aléatoires. Toutefois, nous pouvons nous satisfaire d’OTs (ou plus généralement, de corrélations)
pseudo-aléatoires 1. Le but d’un PCG est ainsi de transformer une certaine quantité de véritable
aléa corrélé en une large quantité de pseudo-aléa corrélé. Ce faisant, l’objectif est d’avoir un coût
en communication faible par rapport à la quantité d’aléa générée, tout en garantissant un temps
de calcul faible. Cette thèse porte aussi sur une autre construction proche des PCG, les Fonctions
Pseudo-aléatoires Corrélées (PCF) qui visent à générer des corrélations à la volée.

PCG et PCF sont construits grâce à deux concepts clés :
— Fonction Point Distribuée (DPF) : Cette primitive, introduite par Boyle, Gilboa et Ishai en 2015

[BGI15], permet à deux joueurs d’obtenir respectivement une fonction pseudo-aléatoire f0, f1,
telles que la somme f0 + f1 soit égale à une fonction non-nulle en une seule entrée (en un
seul point). Cette primitive permet aux deux parties de partager de manière efficace un long
vecteur unitaire 2, c’est-à-dire, qui donne un vecteur pseudo-aléatoire u0 à Alice et un vecteur
pseudo-aléatoire u1 à Bob, tels que u0 ⊕ u1 soit égal à un vecteur unitaire.

— L’hypothèse de Décodage de Syndrome (SD) : Il s’agit d’une hypothèse classique en théorie
des codes, qui assure qu’il est difficile de distinguer (H, s) de (H,He), avec H une matrice

1. Signifiant qu’aucun algorithme efficace ne peut distinguer des OTs pseudo-aléatoires de OTs vraiment aléatoires.
2. Si le vecteur unitaire est de taille n, nous voulons que les parts puissent être compressées avec O(log(n)) bits.
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aléatoire, s un vecteur aléatoire et enfin e un vecteur creux aléatoire, c’est-à-dire avec peu de
coordonnées non nulles.

Les constructions ainsi créées nécessitent, de par l’utilisation de SD, des multiplications de
matrices. Celles-ci peuvent être très coûteuses, car les matrices considérées sont très grandes : elles
sont de l’ordre du nombre de OTs que l’on veut générer (ou de l’ordre de la quantité d’aléa corrélé
que l’on désire pour être moins spécifique). Il est donc naturel de considérer des optimisations pour
réduire les coûts de calcul. Une piste prometteuse est la suivante : plus haut, il est fait mention du
fait que H est une matrice purement aléatoire, dans l’hypothèse de décodage de syndrome dans
sa version classique. Ce n’est toutefois pas forcément nécessaire. Changer de matrice, introduire
certaines formes de régularité, peut ainsi permettre de gagner en efficacité. Toutefois, une attention
toute particulière est requise pour s’assurer que l’hypothèse de décodage de syndrome tient toujours,
même quand on restreint H. Ceci était le point de départ de cette thèse : faire un pont entre le calcul
sécurisé d’une part et la théorie des codes d’autre part. Dans cette thèse, nous construisons ainsi
toutes nos primitives en utilisant des variantes spécifiques de l’hypothèse de décodage de syndrome,
dont nous analysons scrupuleusement la sécurité.

Contenue de la Thèse
Le chapitre 2 introduit formellement les connaissances préalables nécessaires pour comprendre

cette thèse. Le chapitre 3 définit précisément les PCGs et PCFs.

Le Modèle des Attaques Linéaires

L’hypothèse de décodage de syndrome (SD) est une hypothèse très classique en cryptographie,
introduite il y a plus de quarante ans. Étant donné son ancienneté, elle a fait l’objet de nombreuses
études et attaques. Comment, dans ces conditions, s’assurer qu’un adversaire ne réussisse pas à
trouver une faille ? Il a été judicieusement observé par [BCGI+20a] que la majorité des attaques
sur SD consistent essentiellement en des opérations linéaires sur le syndrome s, opérations qui ne
dépendent que de la matrice H. Cela implique que ces attaques peuvent être représentées par un
vecteur d’attaque, dont le produit scalaire avec s peut être biaisé ou non (selon que l’on est dans
le cas (H, s) ou (H,He)). [BCGI+20a] introduisit alors le modèle des attaques linéaire, qui peut se
résumer ainsi : tout d’abord, la matrice H est donnée à l’adversaire. L’adversaire possède alors un
temps illimité pour déterminer un vecteur d’attaque v. Pendant ce temps, on génère un vecteur creux
e aléatoire. L’adversaire gagne si il réussit à déterminer un v tel que v⊺He ait un biais significatif.
L’intéret de se modèle est de montrer que si on peut montrer que pour tout vecteurs d’attaque le bias
est majoré par une certaine valeur avec forte probabilité, alors cela implique une borne inférieur sur
le temps de toutes les attaques dites “linéaire”. Cette classe d’attaque, comme dit initiallement est très
large, et contient notamment les algorithmes d’information set-decoding (ISD), les plus prometteuses
contre SD. Le chapitre 4 fait l’état des lieux de ce formalisme récent, prouvant notamment comment
les ISD peuvent s’intégrer correctement dans ce modèle, et montrant également comment il est
possible de montrer une résistance aux attaques linéaires en via des propriétés de la matrice H.

Générateur de Corrélation Pseudo-aléatoire à partir de l’Hypothèse
de Décodage de Syndrome QA-SD

Le travail de cette partie provient de deux articles, l’un publié à Crypto2023, l’autre disponible
sur eprint [BCCD23 ; BBCC+24].
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Le chapitre 5 traite de la création d’un PCG pour la corrélation OLE 3. Cette corrélation est
définie ainsi : elle donne (u, v) au premier joueur et (∆, w := u∆+ v) au second, avec u, v, w,∆ des
éléments d’un anneau. Notre construction s’appuie notamment sur le travail de [BCGI+20b], dont la
sécurité repose sur une variante de SD pour des anneaux de polynômes : il s’agit de distinguer (a, y)
de (a, a · e1+ e2) avec a, y des polynômes sur Fq[X], et e1, e2 des polynômes creux, c’est-à-dire avec
peu de coefficients non nuls. L’approche de Boyle et al. était de créer une seule corrélation sur un
anneauR = Fq[X]/(P (X)), avec P (X) un polynôme factorisable en produit de facteurs linéaires,
puis d’utiliser le Théorème des restes chinois, qui assure l’existence d’un isomorphisme entreR et
Fn
q . En appliquant cet isomorphisme sur l’unique OLE préalablement produite, ils pouvaient obtenir

de nombreuses instances de la corrélation sur Fq .
Dans cette thèse, nous présentons une nouvelle variante de SD, avec l’hypothèse de décodage

de syndrome quasi-abélien (QA-SD). Notre but est de se débarrasser d’une contrainte pénible de
la construction de Boyle et al. : les OLEs produits ne l’étaient que sur des corps suffisamment
grands (à savoir plus grands que le nombre d’OLEs que l’on souhaite générer). La construction
proposée dans ce manuscrit utilise un anneau différent, en passant au multivarié : formellement,
en prenant R = Fq[X1, . . . , Xn]/(X

q−1
1 − 1, . . . , Xq−1

n − 1), nous pouvons réduire la contrainte
sur la taille du corps à q ⩾ 3. Il apparaît que cet anneau est toujours isomorphe à de nombreuses
copies de Fq . Comment pouvons-nous créer l’OLE sur cet anneau ? Nous suivons les grandes lignes
de [BCGI+20b] : nous pouvons créer u et ∆ comme des éléments pseudo-aléatoires de l’anneau
résultant de l’hypothèse QA-SD, c’est-à-dire u = ae1 + e2, pour e1 et e2 des polynômes creux. En
faisant de même pour ∆, il apparaît que le produit u∆ fait intervenir a, a2, mais surtout des produits
de polynômes creux. Un point important est alors de remarquer que le produit de polynômes creux
reste creux. Nous pouvons alors utiliser la primitive DPF. Cette primitive nous permet de partager
additivement des vecteurs unitaires. Mais étant donné qu’un vecteur creux n’est finalement rien
d’autre qu’une somme de vecteurs unitaires, il est possible de partager un vecteur creux. Or, il est
possible également de voir un polynôme comme un vecteur, en regardant sa liste de coefficients. Il
devient alors possible de partager additivement ces produits creux et ainsi de partager u∆. Il ne reste
plus qu’à définir ces parts comme étant v et w.

Il faut maintenant prouver la sécurité de l’hypothèse sous-jacente, c’est-à-dire QA-SD, dans le
cadre des polynômes multivariés. Pour ce faire, nous pouvons compter sur l’apport de la théorie des
codes : le code ainsi défini surR peut être vu comme un code de quasi-groupe. Pour montrer que
l’hypothèse est valable, nous utilisons le modèle des attaques linéaires.

La thèse présente également une manière d’obtenir des triplets de Beaver sur F2, une autre
corrélation fondamentale. Ceci est fait en utilisant une astuce, au prix d’une augmentation raisonnable
du temps de calcul et de la communication. L’astuce consiste à produire desOLEs surF4 en s’appuyant
sur notre précédent travail, puis à les transformer en triplets de Beaver sur F2. Nous montrons
comment optimiser la génération d’OLEs sur F4. Nous arrivons avec cette construction à battre
l’état de l’art sur la génération de triplets de Beaver avec environ 10 millions de triplets générés par
seconde. Le chapitre 6 concerne l’analyse de sécurité de l’hypothèse QA-SD. Nous tentons d’attaquer
notre propre schéma pour en extraire des paramètres résistants à nos tentatives, avec une marge de
sécurité standard à 128 bits.

Fonctions Pseudo-aléatoires Corrélées par une Hypothèse de SD avec
Densité Variable

Le travail de cette partie provient d’un article publié à PKC2023 [CD23].

3. Évaluation Linéaire Inconsciente
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Dans le chapitre 7, cette thèse aborde la construction de Fonctions Pseudo-aléatoires Corrélées
(PCF). Le but est de générer des clés courtes k0 et k1 à donner aux joueurs, telles que les clés
décrivent les fonctions fk0 et fk1 . Sur n’importe quelle entrée x, fk0(0) et fk1(0) doivent être
corrélées. L’avantage d’une PCF par rapport à un PCG est que l’aléa corrélé n’est pas généré d’un
coup, mais sur demande, ce qui offre une bien meilleure flexibilité. Toutefois, cet avantage entraîne
également une plus grande difficulté de mise en place.

Le travail présenté ici s’appuie sur une construction que nous devons à [BCGI+20a]. La construc-
tion repose elle aussi sur une nouvelle hypothèse de décodage de syndrome : SD avec densité variable
(VDSD). Cette fois-ci H est construite comme une concaténation de matrices dont la densité (poids
de la ligne divisé par la taille de cette ligne) décroît strictement, et e est généré comme le serait une
ligne de la matrice. La forme de la matrice à densité variable permet de faire des multiplications de
manière efficace, alors que la matrice est supposément très large (mais donc très creuse). Concernant
la sécurité de cette hypothèse, [BCGI+20a] avait pour objectif de montrer que cette construction
était sécurisée dans le modèle des attaques linéaires. Nous montrons que la preuve de sécurité de
cette construction contenait quelques erreurs que nous corrigeons. Nous proposons également une
nouvelle preuve de sécurité sur une version légèrement modifiée de la matrice H. Cette nouvelle
analyse, plus fine, accompagnée de cette nouvelle matrice qui réduit des effets de bord indésirables, et
une fine optimisation des paramètres permet de rendre la construction presque utilisable en pratique :
nous atteignons de l’ordre de 2000 corrélations générées par seconde 4.

4. contre environ 100k pour la PCF état-de-l’art
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Chapter 1
Introduction

1.1 Cryptography

1.1.1 Private Communication

Imagine you are trying to send a confidential message to a friend. How can you ensure that no
one else intercepts and reads it? A child’s solution might be to place the message in a locked box
and send it, assuming that the recipient also holds the key to unlock it. While simple, this method is
not satisfactory: if someone else finds the box, they could potentially break it open and access the
message. Another method is steganography, which consists in hiding the message within another
message, such that the presence of the additional message is not evident to a non-aware gaze. For
example, who has never heard of the famous lemon juice that makes invisible ink, or of hiding secret
data within an image by subtly altering its pixels? However, these methods rely on the secrecy of
the technique itself. Once the method is discovered, all hidden messages can be exposed, and the
technique cannot be reused.

This is where cryptography comes in, offering a more sophisticated and reliable solution. Cryp-
tography uses mathematical algorithms to secure messages, replacing physical locks and keys with
digital ones. Both the sender and receiver share a secret key. The sender uses this key to encrypt
the message, transforming it into a ciphertext, which can be thought of as putting the message in
a digital box. The recipient, who also possesses the key, can decrypt the ciphertext and retrieve
the original message. Cryptography’s strength lies in its ability to ensure that without the key, the
encrypted message remains secure, even if the encryption method is known. Many ciphers have been
invented over time, but a lot get broken 1 either by humans or by computers. The emergence of the
digital age and of the Internet sped up the transformation of cryptography as an important science,
with precise methods to analyze if a cipher is secure or not. Today, we can prove that a cryptosystem
is secure by demonstrating that breaking it requires solving problems that are complex even for
powerful computers. Cryptography has gradually become part of our daily lives. For instance, an
estimated 85% of websites uses the TLS protocol for secure Internet communication, a figure that
rises to 95% for web pages recommended by browsers like Google or Bing. Nowadays, we live in
a world (relatively) secure regarding communication: anyone can send a message to a friend with
confidence, knowing that it cannot be read by unauthorized parties, including governments.

1. meaning that it becomes possible to retrieve the message without having to know the key in the first place.
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1.1.2 Secure Multiparty Computation

While secure communication is crucial, our daily use of the Internet involves much more. In the
early days of the Internet, activities primarily revolved around communication, such as sending emails
and browsing websites. Today, our Internet usage has expanded significantly. People use smartphones
to monitor various aspects of their lives, from athletes tracking their performance to parents seeking
meal ideas. Modern websites and apps also employ targeted advertising and recommendation
algorithms, suggesting products or contents based on users’ preferences and browsing history.
These recommendation tools are everywhere: Netflix recommending shows, YouTube highlighting
videos, Facebook suggesting friends, and even Tinder matching users with potential partners. These
recommendation systems require data, often collected without users realizing that their personal
data are no longer private. This raises a paradox: people value privacy but frequently share personal
data with large corporations in exchange for the service they provide.

Fortunately, cryptography offers a solution to this paradox through Secure Multiparty Computa-
tion (MPC). MPC allows for the execution of an algorithm on private data while keeping the data
itself hidden. For example, a platform like YouTube could receive encrypted user preferences and
still use them to suggest relevant videos without ever seeing the actual preferences. Formally, given
inputs x1, . . . , xN from N different parties, MPC lets them compute a function f such that each
party receives the result f(x1, . . . , xN ) and nothing more. The applications of MPC are countless.
In addition to the previously mentioned advertising application, it can also be used for:

— Extracting Intersection of Data Records: A social network can recommend connecting with your
friends who also have accounts. To achieve this, it needs to identify the overlap between its
list of users and your list of friends, without disclosing all users to you or learning about your
friends who are not on the platform.

— Government and Public Policy: Government can analyze data for policy-making without sharing
sensitive information. For instance, tax authorities and social services can calculate statistics
on income distribution without exposing individual records.

— Banking Fraud Detection: Banks can collaboratively identify suspicious transaction patterns
without revealing individual transaction details.

Therefore, MPC addresses the challenge of maintaining privacy while performing computations
on private data. However, for practical use on social media and the Internet, MPC protocols need to
be efficient. While protocols exist, achieving true efficiency remains a major challenge. This thesis
aims to improve MPC methods.

But how does secure computation work? MPC emerged in the early days of modern cryptography
with the seminal work of Yao in 1982 [Yao82]. In 1987, Goldreich, Micali, and Wigderson introduced
the GMW protocol [GMW87], which operates on the Boolean circuit representation of the function to
be computed. The parties securely compute the circuit by calling a subroutine for each multiplication
gate: a protocol called Oblivious Transfer (OT). An oblivious transfer involves a sender holding
two values, x0 and x1, and a receiver with a selection bit b. The sender transfers xb to the receiver
without knowing b, and the receiver gets xb without learning x1−b. Originally, the values x0, x1 and
b are determined by the inputs to the GMW protocol, and therefore one needs the inputs of GMW
before computing the OT protocols.

But in 1992 Beaver [Bea91] showed that the OTs could be first precomputed with random inputs,
and later adapted with the actual inputs. This leads to a two-phases MPC protocol: a preprocessing
phase where the parties construct their random oblivious transfers, and an online phase where the
parties use the oblivious transfers they have constructed. This separation reduces the communication



1.1 Cryptography 3

and computational costs during the actual computation (the online phase). But there is a caveat:
the computation of each multiplication gates consumes 2 OTs, meaning that we cannot reuse them
a second time. This is a problem because Oblivious Transfer is not cheap to produce, and above
all, a huge quantity of them must be generated. The cost in both computation and communication
becomes tremendously big considering that the number of multiplication gates in the boolean circuit
of a function that we could consider is likely to be in the billions. Therefore, something has to be
done to make the preprocessing phase practical.

Today’s solution is to transform efficiently a small amount of OTs into a large amount of OTs,
by only dropping one of their characteristics. Originally the oblivious transfers produced during the
online phase were supposed to be generated using true randomness and being independent from
one another. By dropping this property, we settle for pseudorandomness 2: if the oblivious transfers
produced are now not totally independent from one another, they act in every way as if they would.
With this in mind, modern MPC protocols can be of the following shape: first create a small amount
of random correlations, transform it into a large amount of OTs, and use this large amount of OTs
in a very fast online phase.

This transformation is achieved using Pseudorandom Correlation Generators (PCG) and their
counterparts, Pseudorandom Correlation Functions (PCF). This manuscript does not focus solely
on OT but also on other correlations that can be held by the players, which are values that satisfy
specific relationships. Various types of correlations will be studied throughout the manuscript. PCGs
and PCFs rely on two key components:

— Distributed Point Function (DPF): Introduced by Boyle, Gilboa and Ishai in 2015 [BGI15], a DPF
enables two parties to obtain pseudorandom functions f0, f1 such that their sum is a point
function, a function nonzero at exactly one point. This primitive enables parties to efficiently
share between Alice and Bob a large unit vector 3, that is, giving a pseudorandom vector u0 to
Alice, and a pseudorandom vector u1 to Bob such that u0 ⊕ u1 is equal a unit vector.

— Syndrome Decoding assumption (SD): A classical assumption in coding theory, it captures the
difficulty of distinguishing between (H, s) and (H,He) for H a random matrix, s a random
vector and e a random sparse vector, that is a vector with few nonzero entries.

We illustrate how DPF and SD can combine together via an example, in the case of the OT
correlation. Say that our goal is to produce n different OTs. Alice will hold therefore (xi0, xi1)0⩽i⩽n−1
and Bob (bi, yi := xi

bi
)0⩽i⩽n−1. We define the vectors xσ = (xiσ)0⩽i⩽n−1 for σ ∈ {0, 1}, b =

(bi)0⩽i⩽n−1 and y = (yi)0⩽i⩽n−1. Define x2 = x1 − x0. Then we have that b ⊙ x2 = y + x0,
where ⊙ denote the component-wise product. We show how to parties can construct such vectors.
Let say we construct

b = He0

and
x2 = He1,

where e0, e1 are sparse vectors, and H is a parity-check matrix known by both Alice and Bob. Alice
holds He0 and Bob holds He1. Syndrome Decoding ensures that b and x2 are pseudorandom. Now,
remark that b⊙ x2 = He0 ⊙He1. Consider one entry of b⊙ x2. One can check that it is equal
to ⟨h⊗ h, e0 ⊗ e1⟩ where h is the row of H corresponding to that entry and ⊗ denotes the tensor
product. Remark that because e0 and e1 are sparse their tensor product remains sparse. Viewing a
sparse vector as a sum of unit vector, and observing that each unit vector is the truth table of a point

2. Pseudorandomness means that no efficient algorithm can distinguish the string from a truly random string. This
notion will be formally defined later in the manuscript.

3. If the large unit vector is of size n, the shares can be compressed with only O(log(n)) bits
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function (that the players can get shares of using a DPF), yields a simple method to distribute shares
of sparse vectors with a communication that grows only with the numeber of nonzero entries. Let be
u0 and u1 the different shares. Then Alice defines x0 to be equal to Ku0 where K is the matrix
whose rows are the h⊗ h. Alice set her value of x1 = x2 + x0. Similarly, Bob sets y to be equal
to Ku1. Thanks to the property of DPF, u0 and u1 appear to be pseudorandom, and this property
therefore hold for x0 and x1 and y. We managed successfully produce numerous OT.

The code-based PCG approach involves multiple matrix multiplications, which can be costly due
to the large matrix sizes: their size is approximately the number of OTs we have to produce, which
can easily be in the billions. Strategies are needed to minimize computational costs. To improve
efficiency, one natural consideration is to explore alternative matrix structures for H. In the original
Syndrome Decoding assumption, H is assumed to be a purely random matrix. However, introducing
structured matrices could potentially accelerate the protocol. Care must be taken, however, to ensure
that any structural modification to H does not compromise the underlying security assumptions.
This was the starting point of our thesis: to build a bridge between MPC and coding theory, two
communities that do not know each other very well. The contributions we present in the next section
are therefore always based on a particular interpretation of the Syndrome Decoding assumption, for
which a security analysis is meticulously conducted.

1.2 Our Contributions
Syndrome Decoding is an old assumption and the number of attacks is extensive. How can

we ensure that a particular adversary will not compromise our system? It was cleverly observed
in [BCGI+20a] that the majority of attacks on the Syndrome Decoding assumption are essentially
performing linear computations on the syndrome s, computations which further depend solely on
H. This implies that such attacks can be described by the existence of an attack vector, which, when
doing the scalar product with s may be biased in scenario 2 ((H, s = He), with e sparse) but not
in scenario 1 ((H, s), with s random). This observation motivates the introduction of the linear test
framework. The framework operates as follows: we provide the matrix H used in our Syndrome
Decoding assumption to the adversary before sampling the noise vector e. The adversary then has
unlimited time to identify the optimal attack vector v such that v⊺He offers a significant bias. This
model serves as a lower bound for all possible linear attacks. If we can demonstrate that a matrix
is secure within the linear test framework, we effectively prove its security against all attacks in
this category. This is significant because it includes the best-known algorithm against Syndrome
Decoding, namely Information Set Decoding (ISD) algorithm. In this thesis, we present a unified
treatment of this framework. We demonstrate how ISD fits into this model and discuss the framework,
highlighting its advantages and limitations.

1.2.1 A PCG from the Quasi-Abelian Ring Syndrome Decoding As-
sumption

Our first contribution in this thesis builds upon the work of [BCGI+20b], in which they developed
a PCG using Ring Syndrome Decoding assumption. This special case of the syndrome decoding
assumption is standard, capturing the difficulty of distinguishing (a, y) from (a, a · e1 + e2) where
a, y are polynomials over Fq[X], and e1, e2 are sparse polynomials—those with few non-zero coef-
ficients in Fq[X]. Essentially, this generalizes the Syndrome Decoding assumption to the context
of polynomial rings. The original approach by Boyle et al. aimed to create a single correlation
over a ringR = Fq[X]/(P (X)), with P (X) being a polynomial that splits completely into linear
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factors. Under this condition, invoking the Chinese Remainder Theorem establishes an isomorphism
betweenR and Fn

q . Applying this isomorphism on our single correlation enables the derivation of
multiple correlations. In [BCCD23], we revisit this construction and introduce a new assumption, the
Quasi Abelian Syndrome Decoding assumption, tailored to our specific requirements. Our goal was to
overcome a significant constraint in Boyle et al.’s initial approach: the construction could be achieved
only over extremely large fields (larger than the number of pseudorandom correlations obtained at
the end, which is large by assumption). We observe that using a multivariate approach eliminates
this issue. Specifically, by takingR = Fq[X1, . . . , Xn]/(X

q−1
1 − 1, . . . , Xq−1

n − 1), the limitation is
reduced to q ⩾ 3, which is much more manageable. A new analysis of the security of Ring Syndrome
Decoding in the multivariate case is therefore necessary. To achieve this, we use two specific tools:
the linear attack framework and Quasi-group codes. They are special class of codes built over the
set of all formal sums of elements of the group. Analyzing the security of the construction can be
reduced to studying the underlying Syndrome Decoding assumption in the context of Quasi Abelian
Syndrome Decoding (QA-SD). We performed this analysis and found that standard results state that
R = Fq[X1, . . . , Xn]/(X

q−1
1 − 1, . . . , Xq−1

n − 1) ≃ F(q−1)n
q for an appropriate choice of group G.

To show that the construction is secure, we attempt to show it is secure inside of the linear attack
framework. We used a standard technique to relate resistance against linear attacks to some property
of the underlying code we consider, in this case the minimal distance of the dual code, and we analyze
it.

In a follow-up work [BBCC+24], we push forward different aspects that were overlooked or
deferred in [BCCD23]. First, we developed a method to obtain correlations over F2, rather than
F3. The approach involves generating correlations over F4 and then converting them to F2. This
method introduces some computational and communication overhead, but it is necessary in order
to circumvent the limitation on the field size inherent to the QA-SD construction (q ⩾ 3). We
therefore focused particularly on the case of F4 in order to obtain correlations over F2 in the end.
We decided to develop a fully optimized version of the algorithm, incorporating all aspects of
the previous construction but tailored specifically to the F4 case. Additionally, we conducted a
new thorough security analysis of the scheme. This analysis uncovered that some of our original
parameter selections were too optimistic, and identified new optimized attacks against the quasi-
abelian syndrome decoding assumption.

1.2.2 A PCF from the Variable Density Syndrome Decoding Assump-
tion

We also analyze the construction of a Pseudorandom Correlation Function (PCF). A PCF is a
more complex cryptographic primitive than a PCG and aims to resolve the main issue that PCGs face:
it generates all pseudorandom correlated randomness simultaneously. Instead, PCFs generate the
correlations on-the-fly. The players perform a single short protocol at the beginning to obtain some
correlated keys. Using these keys, they can construct a function indexed by the keys, fk0 , fk1 . The
players can agree on the inputs to call the function on and can precisely generate the required amount
of correlated randomness without having to redo the protocol when the number of correlations runs
out. The advantage of PCFs is that the parties do not need to store a long chain of pseudorandom
correlations, as they only need to evaluate their function each time they want a new correlation.
We will detail our work [CD23], which is a refinement of [BCGI+20a]. The latter introduced a new
assumption, the Variable Density Learning Parity with Noise (LPN) assumption, which we will call
Variable Density Syndrome Decoding in this manuscript, as we focus more on the coding theory
perspective.
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To prove the construction secure, [BCGI+20a] provides a proof that it resists all linear tests
through a precise analysis of the bias. In [CD23], we produce a correction of their analysis, which we
found to contain some errors, and propose a slightly modified version of the construction (and thus of
the assumption), enhanced with a better analysis and some precise parameter optimizations to make
the scheme usable in practice. To be more concrete, the VDSD assumption is a particular variant of
SD where both the error vector e and the matrix H follow a specific structure: they are composed of
different blocks, each block being larger than the previous one but with the same number of non-zero
coordinates per block, resulting in the density of each block decreasing (exponentially in the original
construction). This particular construction allows the computation of matrix-vector products in
linear time while ensuring that the output is not a sparse vector and, at the same time, having an
exponentially large matrix compared to its description. We retain the same construction but replace
the first few blocks with purely random blocks. With the different optimizations listed above, we
were able to reduce the security parameters by approximately four orders of magnitude in [CD23].

1.3 Organization of the Manuscript
Chapter 2 introduces general background on coding theory and the syndrome decoding assump-

tion, as well as general MPC techniques that interest us, such as the GMW technique. The objects
that we precisely study in this manuscript, PCG and PCF, are formally introduced and discussed
in Chapter 3. Chapter 4 focuses on the linear attacks framework, covering the standard definition
and showing its pros and cons. Chapter 5 and Chapter 6 cover the work we did on PCGs ([BCCD23;
BBCC+24]): the former covers the original QA-SD construction and the subsequent optimizations,
and the latter covers the concrete security analysis of QA-SD. Finally, Chapter 7 presents our work
from [CD23] and discusses the VDSD constructions and their improvements.



Chapter 2
Technical Background

We provide the essential background needed to comprehend the rest of the manuscript. Initially,
we review key concepts in probability and major constructions in cryptography. Next, we focus
on coding theory and the various hardness assumptions that will be referenced throughout the
manuscript. Lastly, we offer a brief definition of secure multiparty computation and elaborate on the
existing techniques in this domain.
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8 Technical Background

2.1 Notations
Throughout the manuscript, F shall denote a finite field, and Fq is the finite field with q elements.

G shall denote a finite abelian group andR a ring. N shall denote the set of natural numbers. We
denote by [a, b] the set of integers between a and b (included). [n] denotes [0, n− 1]. We use A ≃ B
to denote that two sets are isomorphic. Matrices and vectors will be denoted with bold letters, with
matrices always capitalized. We assume that vectors are always considered as columns, and we
denote their row counterparts with v⊺. For a vector v, we denote its i-th entry by vi. For two
vectors u = (u1, . . . , ut)

⊺,v = (v1, . . . , vt)
⊺ ∈ Rt for some ring R, by u ⊗ v the tensor product,

defined by u ⊗ v = (ui · vj)⊺i,j⩽t = (v1 · u⊺, . . . , vtu
⊺)⊺ and we denote by ⟨u,v⟩ = u⊺ · v their

inner product. Similarly, we define u⊞ v to denote u⊞ v = (ui + vj)
⊺
i,j⩽t. Finally λ shall design a

security parameter.

2.2 Probability Toolbox
In this section, we list different concentration bounds and probability results that will be useful

in the thesis.

Definition 2.2.1 (Bias of a Distribution). Given a distribution D over Fn and a vector v ∈ Fn, the
bias of D with respect to v, denoted biasv(D), is equal to

biasv(D) = |Px∼D[v
⊺ · x = 0]− Px∼Un [v

⊺ · x = 0]| =
∣∣∣∣Px∼D[v

⊺ · x = 0]− 1

|F|

∣∣∣∣ ,
where Un denotes the uniform distribution over Fn. The bias ofD, denoted bias(D), is the maximum

bias of D with respect to any nonzero vector v.

2.2.1 Standard Probability Lemmas

Given t distributions (D1, . . . ,Dt) over Fn
2 , we denote by

⊕
i⩽tDi the distribution obtained by

independently sampling vi
$← Di for i = 1 to t and outputting v← v1 ⊕ · · · ⊕ vt. We will use the

following bias of the exclusive-or (cf. [Shp09]).

Lemma 2.2.1. Let t ∈ N be an integer, and let (D1, . . . ,Dt) be t independent distributions over Fn
2 .

Then bias(
⊕

i⩽tDi) ⩽ 2t−1 ·
∏t

i=1 bias(Di) ⩽ mini⩽t bias(Di).

Let Berr(F2) denote the Bernoulli distribution that outputs 1 with probability r, and 0 otherwise.
More generally, we denote by Berr(F) the distribution that outputs a uniformly random nonzero
element of F with probability r, and 0 otherwise. We will use a standard simple lemma for computing
the bias of a XOR of Bernoulli samples:

Lemma 2.2.2 (Piling-up lemma). For any 0 < r < 1/2 and any integer n, given n random variables
X1, . . . , Xn i.i.d. to Berr(F2), it holds that Pr[

⊕n
i=1Xi = 0] = 1/2 + (1− 2r)n/2.

We will also need two concentration bounds. The bounded difference inequality [McD89] is an
application of the more general Azuma inequality [Azu67]. Let (n,m) ∈ N2 be two integers. We say
that a function Φ : [n]m 7→ R satisfies the Lipschitz property with constant d if for every x,x′ ∈ [n]m

which differ in a single coordinate, it holds that |Φ(x)− Φ(x′)| ⩽ d.
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Lemma 2.2.3 (Bounded Difference Inequality or McDiarmid inequality). Let Φ : [n]m 7→ R be a
function satisfying the Lipschitz property with constant d, and let (X1, . . . , Xm) be independent random
variables over [n]. Then

Pr[Φ(X1, . . . , Xm) < E[Φ(X1, . . . , Xm)]− t] ⩽ exp

(
− 2t2

m · d2

)
.

Eventually, we will rely on the Occupancy Bound from [KMPS94], which provides tight bounds
for the balls and bins problem.

Lemma 2.2.4 (Occupancy Bound). Let E be the number of empty bins when m balls are placed
randomly into n bins, and define r = m/n. The expectation of E is given by µ = E[E] = (1− 1

n)
m ≈

ne−r . For any θ > 0 ,

Pr[|E − µ| ⩾ θµ] ⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
= B

Remark 2.2.1. Note that we can derive the following two equations : Pr[E ⩾ µ(θ + 1)] < B and
Pr[E ⩽ µ(1− θ)] < B

2.3 Cryptographic Building Blocks
We present in this section some well-known cryptographic models, constructions, and primitives

that will be used or serve as a basis in this manuscript.

2.3.1 Hardness in Cryptography

Cryptography has been constructed around the notion of hardness of a problem. Hard problems
are problems for which no efficient algorithms 1 can find a solution with high probability. Broadly
speaking, a cryptographic construction is said to be secure if breaking the construction can be reduced
to solving a hard problem. This hardness is encapsulated in basic cryptographic primitives with
which more involved protocols are built. This is the case for the very fundamental one-way functions.

Definition 2.3.1 (One-way functions). A function f : {0, 1}λ → {0, 1}n(λ) is said to be one-way
when

— The computation of f(x), given the knowledge of f and x is computable in polynomial time in
the security parameter λ.

— For all probabilistic polynomial time adversary A

Pr
x

$←{0,1}λ, y=f(x)

[
f(A(y, 1λ)) = y

]
⩽ negl(λ)

with negl(λ) a negligible function.

In short, one-way functions are functions that are easy to evaluate, but very hard to invert.
But how to build one-way functions? As said previously, it relies on the assumption that hard

1. That we can execute in a polynomial time in size of the input
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problems exist. For example, the discrete logarithm states that for some groups G(·, ϵ), it is hard to
recover k from the knowledge of (α, αk := α · α · · · · α︸ ︷︷ ︸

k times

), where α is a primitive element of the group.

Therefore, f(x) = αx defines a one-way function: computing the result is easy because it consists in
doing log(k) multiplications using exponentiation by squaring, but coming back is hard. One-way
functions imply many concepts in cryptography, among which are pseudorandom generators and
pseudorandom functions (see Section 2.3.3), commitments, and digital signature schemes.

2.3.2 Indistinguishability

A classical tool in cryptography that will be used in this thesis is the notion of indistinguishability.
It is a way to precisely formalize the limitations of the adversary or players.

Definition 2.3.2. There are three distinct notions of indistinguishability.

— Two distributions (D0
n,D1

n) over {0, 1}n are said to be perfectly indistinguishable if

∀α ∈ {0, 1}n, Pr
x

$← D0
n

[ x = α ] = Pr
x

$← D1
n

[ x = α ] ,

for every n ∈ N.
— Two distributions (D0

n,D1
n) over {0, 1}n are said to be statistically indistinguishable if the

statistical distance between D0
n and D1

n is bounded by a negligible function of n.

1

2

∑
α∈{0,1}n

∣∣∣∣∣ Pr
x

$← D0
n

[ x = α ]− Pr
x

$← D1
n

[ x = α ]

∣∣∣∣∣ ⩽ negl(n).

— Two distributions (D0
n,D1

n) over {0, 1}n are said to be computationally indistinguishable if for
every probabilistic polynomial-time adversary A, for all n large enough, it holds that∣∣∣∣∣ Pr

x
$← D0

n

[ A(x) = 0 ]− Pr
x

$← D1
n

[ A(x) = 0 ]

∣∣∣∣∣ ⩽ negl(n).

Remark 2.3.1. In the manuscript, when not specified otherwise, we will by default consider that
indistinguishable means computationally indistinguishable. We write D0

n ≈ D1
n to indicate that two

distributions are computationally indistinguishable, and D0
n ≈s D1

n to indicate that two distributions
are statistically indistinguishable. Moreover, we say we have information-theoretic security when
even an adversary with unlimited computing resources and time is not able to distinguish between
two distributions.

2.3.3 Pseudorandom Generators and Pseudorandom Functions

Randomness is predominant in cryptography. Since its use in the fundamental one-time pad,
most cryptographic applications require random numbers to generate secret keys, nonces, or salts.
This raises a very important question: how do we find significant amounts of randomness? This can
be achieved by using True Random Generators (TRGs), which are systems that output the result of
a physical experiment considered to be random (unpredictable). A simple example is the roll of a
dice, which is considered to be unpredictable and thus serves as a source of randomness in many
board games. More involved and practical sources can be found, such as measuring the electronic
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noise inside an electrical conductor. Nevertheless, the use of TRGs has important limitations. First,
one has to be careful that the result is truly unbiased and unpredictable. This kind of bias can be
balanced after sampling, but this post-processing would reduce the number of useful bits as well as
the efficiency of the generator. In addition, TRGs are often too slow and expensive to implement.
This is why Pseudorandom Generators (PRG) were designed, as a method to produce a large amount
of pseudorandomness from a small amount of randomness - that is, something that will act as a large
amount of random elements even if it is not truly random. This does not mean that TRGs are useless,
as they produce the small amount of real randomness required by the PRG.

Definition 2.3.3 (Pseudorandom Generators). A Pseudorandom Generator (PRG) is a polynomial-
time algorithm G : {0, 1}λ → {0, 1}n - with n≫ λ, such that for any polynomial-time distinguisher
A, it holds that∣∣∣∣∣ Pr

x
$← {0,1}λ, y ← G(x)

[
A(y, 1λ) = 0

]
− Pr

y
$← {0,1}n

[
A(y, 1λ) = 0

] ∣∣∣∣∣ ⩽ negl(λ).

Therefore, given a PRG, no polynomial time adversary can distinguish a purely random number
from a number outputted by the PRG. PRGs can be constructed from believed true cryptographic
assumptions. One of the more important result states that the existence of PRGs is in fact equivalent
(in both directions) to the existence of one-way functions [BM82; HILL99].

Remark 2.3.2. The remarkable statement about PRGs is that the entropy stays low: it is not a
method to generate entropy since we compute y deterministically from a short input x. Nevertheless,
it is hard to distinguish the result of the PRG from a random element of the same size.

Example 2.3.1 (A usage of PRG). The classical one-time pad is a protocol that allows two parties,
Alice and Bob to exchange messages with perfect security (information theoretic). Here is how it
goes: Alice and Bob have already agreed on a key k ∈ Fn

q . They can send any message m ∈ Fn
q

to one another by sending m⊕ k. Because the key is secret and chosen randomly, the security is
perfect. The problem with the one-time pad protocol is that parties have to agree beforehand on a
key k, which size is the same as the size of the message they wish to send. This is surely problematic.
Therefore, if one-time pad offers perfect security, it is not usable in practice. Nevertheless, if we
suppose that parties know a common secret key k0 ∈ Fλ

q and a PRG G : Fλ
q → Fn

q , then parties can
send each other a message using the PRG: the encrypted message is then c = G(k0) +m. If the PRG
is secure, then c cannot be decrypted without the key. Note that in this example we still assume that
the parties both know the same key k0, but in this case the size of k0 is λ≪ n, and therefore, it is
easier for the parties to share such a key.

One of the downsides of the PRG is that one needs to generate all the randomness in one block,
which can be more or less cumbersome. This raises the question of whether it would be possible
to generate on-the-fly pseudorandom elements. It is equivalent to asking whether a pseudorandom
function is possible to be created, that is a function that mimics a real random function.

Definition 2.3.4 (Pseudorandom function). Let k ∈ {0, 1}λ, with λ as the security parameter.

fk : Fa(λ)
2 → Fb(λ)

2

defines a family of functions called pseudorandom functions (PRF) if the following holds:



12 Technical Background

— Given k and x, fk(x) is computable in polynomial time.

— For any probabilistic polynomial-time adversary A and given (xi)0⩽i⩽n(λ)−1∣∣∣∣∣∣∣∣
Pr

k
$← {0,1}λ

[
A((xi, fk(xi))0⩽i⩽n(λ)−1) = 0

]
− Pr

R
$← R(a,b)

[
A((xi, R(xi))0⩽i⩽n(λ)−1) = 0

]
∣∣∣∣∣∣∣∣ ⩽ negl(λ).

where R(a, b) denotes the set of functions Fa
2 → Fb

2.

Remark 2.3.3. It means that it is difficult to distinguish, in polynomial time, a function chosen from
this family from a purely random function by looking at n(λ) evaluations of the function. In the
standard definition, the xi (values on which the evaluations are made) can be adaptively chosen by
the adversary.

A Weak Pseudorandom function (WPRF ) is a PRF where the xi’s are not chosen by the adversary
but sampled uniformly at random from Fa

2 . It is therefore weak because it restricts the power of the
adversary.

Example 2.3.2 (Usage of PRF). Coming back to our example using one-time pad as before, the
notion of PRF offers us more flexibility. More exactly, the parties agree on a value x, and then set the
encryption of each bit bi of the message they want to send to be fk(x+ i) + bi. That is, they can
send bits of messages, but not everything just at once.

2.3.3.1 Constructing PRF from PRG: The GGM Construction

We explain the so-called GGM tree construction to create a pseudorandom function. It was
named after Goldreich, Goldwasser and Micali for their original construction of PRF in [GGM84].
The protocol uses a length doubling PRG G : Fλ

q → F2λ
q , where λ is a security parameter. Starting

from a seed s ∈ Fλ
q , one constructs the GGM tree as follows:

— Label the root of the tree with s.
— Let x be an internal node, with label s(x). Extract the two values s0(x), s1(x) of length λ, using

the length-doubling PRG, with G(s(x)) = (G0(s(x))||G1(s(x))) = (s0(x)||s1(x)), where ||
denote the concatenation. Here G0 and G1 denote respectively the first half and the second
half of G’s output . Then, x has two children x0 and x1 with respective labels s0(x) and s1(x).

For an evaluation domain of size 2m, we have therefore to create a complete binary tree with m
levels, and 2m leaves that we can number canonically in binary. Therefore, for each value of x ∈ [2m],
there exists a leaf numbered by x. The tree defines a pseudorandom function. Why is that? On entry
x ∈ [2m], we define the pseudorandom function fk(x) to be equal to the label of the leaf associated
with x, for the tree constructed from seed s = k. Note that there is no need to compute all the tree
to obtain the fk(x): one can just compute all the intermediate internal nodes from the root to the
concerned leaf. These nodes form the evaluation path of leaf x. Therefore, for a leaf x, Eval(s, x)
compute the labels of all the nodes on its evaluation path until the x, using the seed and the PRG G.
This is represented in Figure 2.1.

2.4 Coding Theory
As stated in the introduction, coding theory plays a crucial role in the constructions presented

in this manuscript. The following overview will not be exhaustive by any means, but it intends to
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k = s

G0(s)

G0(G0(s))

fk(000)

0

fk(001)

1

0

G1(G0(s))

fk(010)

0

fk(011)

1

1

0

G1(s)

G0(G1(s))

fk(100)

0

fk(101)

1

0

G1(G1(s))

fk(110)

0

fk(111)

1

1

1

Figure 2.1 – The GGM construction. The red-path is the evaluation path corresponding to the output
fk(x) = fk(3) = fk(0112).

provide all the different notions required to understand the constructions and their analysis.

2.4.1 What Is a Code?

Coding theory is one of the oldest topics in computer science. It was first extensively studied as
a way to correct errors that may occur in a noisy channel. Such a channel alters messages, making
them noisy, meaning some bits of the message could be flipped or erased. A natural idea to counter
these problems is to introduce redundancy: if the same message is sent multiple times, it will be
easier to recover it even in the presence of noise. This gave birth to the notion of error-correcting
codes, which consists in pairing each message with a codeword. The codeword can be seen as a longer
message, obtained by adding redundancy. The codeword is then sent and may be damaged by the
noise of the channel during transmission, but the hope is that it will be possible to recover the original
message, using a properly designed decoding algorithm. Many different codes exist, but we focus
exclusively on linear codes, which means that the pairing associating a message to its codeword is a
linear map. Namely:

Definition 2.4.1. Let q > 1 and n, k be positive integers with n > k. A linear code C of length n is
the vector subspace of Fn

q of dimension k defined as follows

C =
{
Gm | m ∈ Fk

q

}
,

where G ∈ Fn×k
q of rank k represents a linear map, and is called a generator matrix of C. It is

therefore a subspace of Fn
q of dimension k. We say that C is a [n, k]q-code. The integer n is called the

length of the code C and k the dimension of the code. The rate of the code C is defined to be R = k/n.
The elements of C are called codewords.

Remark 2.4.1. Every G ∈ Fn×k
q describes a code, but a generator matrix of a code is not unique. In

fact, given a non-singular matrix U ∈ Fk×k
q , a standard result states that G and GU both produce

the same code.

A generator matrix G is said to be in systematic form when

G =

[
In−k
G′

]
.

Given G a generator matrix of rank k such that the first k rows are independent, one can obtain
its systematic form by multiplying by the adequate non-singular matrix (representing the column
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operations performed). The idea behind coding theory is fundamentally to introduce redundancy,
and this redundancy is clearly visible when considering the description of a code by G in systematic
form:

C =
{
c | c = Gm,m ∈ Fk

q

}
=

{[
m

G′m

]
| m ∈ Fk

q

}
.

G′m corresponds to the redundancy added to every message.

Definition 2.4.2 (Hamming weight, Hamming distance and minimum distance). The Hamming
weight of a vector x ∈ Fn

q is defined as the number of non-zero entries in x:

wt (x) :=
∣∣∣{i | xi ̸= 0

}∣∣∣.
Similarly, Hamming distance between two vectors x,y ∈ Fn

q is defined as

dH := wt (x− y) .

Let C be a linear code of length n. The minimum distance of C is defined as the smallest Hamming
distance dC between two distinct codewords of C.

dC := min
x,y∈C,x ̸=y

{dH(x,y)}

By linearity, it is also equal to the smallest Hamming weight among the vectors of C\{0}.

dC := min
x∈C,x ̸=0

wt (x) .

We call δ := d/n the relative distance of a code. If C is a [n, k]q-code of minimum distance d, we
classically say it is a [n, k, d]q-code.

Definition 2.4.3 (Parity-check matrix). Let C be a [n, k, d]q code. A parity-check matrix C is a matrix
H ∈ Fn−k×n

q such that
C =

{
c ∈ Fn

q | Hc = 0
}
.

In other words, this means that the code is defined as the right kernel of the matrix H. For the same
reasons as for a generator matrix, a parity-check matrix is not unique.

2.4.1.1 Some Important Bounds in Coding Theory

We present some important bounds imported from coding theory.

Proposition 2.4.1 (Singleton Bound). Let C be a [n, k, d]q code. Then we have

k + d ⩽ n+ 1.

This is asymptotically equivalent to
R+ δ ⩽ 1.

Definition 2.4.4 (entropy function). Let q ⩾ 2. The entropy function is defined as follows

Hq(p) =

{
p logq(q − 1)− p logq(p)− (1− p) logq(1− p) if 0 ⩽ p ⩽ 1;

0 if p = 0, p = 1.
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Proposition 2.4.2 (Gilbert-Varshamov bound theorem). Let q ⩾ 2. For every 0 ⩾ δ < 1 − 1
q and

0 < ϵ ⩽ 1−Hq(δ), there exists a code with rate R ⩾ 1−Hq(δ)− ϵ and relative distance δ. Moreover,
for (δ, ϵ) as defined above, a random code C of dimension k ⩾ (1−Hq(δ)− ϵ)n satisfies:

Pr(d(C) > δn) ⩾ 1− q−ϵn.

This means that, with high probability, the parameters of random codes are close to the Gilbert-Varshamov
bound.

2.4.2 The Syndrome Decoding Problem

As previously stated, the whole idea behind coding theory is to be able to correct errors produced
by the noise in the channel. In this thesis, the noise will be modeled by sparse vectors.

Definition 2.4.5 (t-sparse vectors). A vector v ∈ Fn
q is said to be a t-sparse vector if it has a Hamming

weight inferior or equal to t≪ n. We denote by S(Fn
q , t) the set of all t-sparse vectors over Fn

q . We say
that we have a notion of sparsity over Fq .

The noise can also be modelled via a Gaussian distribution but in this thesis, we will work only
with an error defined uniquely by its small Hamming weight. Given a corrupted codeword c+ e,
where e is a t-sparse vector, it should be possible to recover the original message associated with
c, assuming that t is not too large. Here are some insights on why coding theory offers correction
capability. Consider an [n, k, d]q code. Whenever t < d/2, there exists a decoding method that,
although simple to explain, is challenging to implement in practice: given a noisy codeword c′ = c+e,
return the message m corresponding to the closest codeword to c′. Using this technique there is
no ambiguity, and we can recover the codeword. This illustrates the importance of the minimum
distance in a code and serves as proof of feasibility.

However, practical decoding is not straightforward. The previously mentioned method shifts
the difficulty of error correction to finding the closest codeword. But finding the closest codeword
is computationally demanding due to the vast search space. Employing a brute-force approach
would require up to (q − 1)t

(
n
t

)
operations, which is impractical for large values of t. Fortunately,

more efficient strategies are available. One standard technique is syndrome decoding. This approach
involves computing the syndrome, defined as s = Hc′, where H is the parity-check matrix of the
code. Notably, Hc′ = H(Gm+e) = He, implying that recovering the noise vector e would resolve
the decoding problem. Hence, the task becomes finding a sparse solution to the equation s = He.
Although techniques for identifying this sparse solution are more efficient than brute-force methods,
no polynomial-time algorithms in t are currently known. Some of the most effective techniques will
be examined in Appendix B.

In the late 70s’, during the early age of modern cryptography, researchers were actively seeking
hard problems that could be used as a foundation for encryption schemes. Naturally, they decided to
examine decoding, which led to the formulation of an important assumption.

Definition 2.4.6 ((Search) Syndrome Decoding assumption). Let (n, k, t) = (n(λ), k(λ), t(λ)) be
parameters polynomial in the security parameter λ. The Search Syndrome Decoding problem is defined
as follows: Given H ∈ F(n−k)×n

q a parity-check matrix, and s ∈ Fn−k
q as a syndrome, the goal is to

recover (if it exists) an error e ∈ S(Fn
q , t) such thatHe = s.

The search Syndrome Decoding assumption states that the syndrome decoding problem is hard.
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That is, for every probabilistic polynomial-time algorithm A, it holds that:

Pr
H

$← F(n−k)×n
q , e

$← S(Fn
q ,t)

[ A(H, s = He) = e ] ⩽ negl(λ),

where negl denotes a negligible function.

This assumption can also be stated in a decisional variant, which will be the one used and studied
in this thesis.

Definition 2.4.7 ((Decisional) Syndrome Decoding assumption). Let (n, k, t) = (n(λ), k(λ), t(λ)
be parameters polynomial in the security parameter λ. The goal of the decisional syndrome decoding
problem is to distinguish, with a non-negligible advantage, between the distributions

D0 : (H, s) where H
$← F(n−k)×n

q , s
$← Fn

q and
D1 : (H,H · e) where H

$← F(n−k)×n
q , e

$← S(Fn
q , t).

Remark 2.4.2. The decisional syndrome decoding assumption, that we will shorten in syndrome
decoding, and denote by (n, k, t)q − SD or SD when the context is clear, states that this problem is
hard. That is, for every probabilistic polynomial-time algorithm A, it holds that

∣∣∣∣∣∣ Pr
H

$← F(n−k)×n
q , e

$← S(Fn
q ,t)

[ A(H,He) = 0 ]− Pr
H

$← F(n−k)×n
q , s

$← Fn−k
q

[ A(H, s) = 0 ]

∣∣∣∣∣∣ ⩽ negl(λ),

where negl denotes a negligible function.

The two assumptions are, in fact, equivalent: there exists search-to-decision reductions (starting
with [FS96]).

Remark 2.4.3 (Distribution of the sparse vectors). Unless stated otherwise, we assume that we
always sample sparse vectors uniformly at random in S(Fn

q , t). Another distribution that we will
consider is the regular distribution, which consists of sampling a vector of weight t, the t-non zero
coordinates being equally distributed in blocks of size n/t.

Remark 2.4.4 (Link with Learning Parity with Noise assumption (LPN )). In the MPC community,
the first attempts to solve noisy equations and their associated hardness were mostly done using the
Learning Parity with Noise assumption ([BCGI18; BCGI+19b]). Imagine that you have access to an
oracle that returns either (1) always (a, ⟨a, s⟩+e), with fixed random secret s, (2) (a, b), for a random
vector, and b a random bit. This Learning Parity with Noise assumption (LPN) tackles the hardness of
distinguishing if the oracle is in case (1) or (2). The assumption can be described in different flavors,
including the dependence on the number of samples one can request from the oracle. Suppose that
the number of calls to the oracle is bounded by n. We can construct the matrix G formed with the a⊺
as rows, and the vector e = (e0, . . . , en−1)

⊺. Then it boils down to distinguishing (G,Gs+ e) from
(G,y) where y := (b0, . . . , bn−1)

⊺ is a random vector. We recognize the standard decoding problem,
with the matrix G being a generator matrix. Let H be a parity check-matrix associated with G.
Multiplying by H on the left, we obtain that it is equivalent to distinguishing between (H,He) and
(H, s), where s is a random vector. This is nothing else than the syndrome decoding assumption.
As we are fundamentally using codes and their properties, we decided to change the standard used



2.4 Coding Theory 17

terminology and replace it with Syndrome Decoding (SD) instead of Learning Parity with Noise
(LPN), but no difference other than semantic is to be found behind this change.

2.4.2.1 Other Flavors of Syndrome Decoding

Research in coding theory quickly found ways to circumvent the hardness of syndrome decoding
by designing specific classes of codes C = {C1,C2, . . . } that come with easy decoding algorithms
and many other good properties. However, this is precisely what we want to avoid, as we aim to
use the hardness of decoding as a basis for constructing cryptographic schemes. Still, restricting
ourselves to specific classes of codes can be interesting for many reasons, such as reducing the cost
of multiplication by H, or reducing the memory cost. The syndrome decoding assumption would
then ask to distinguish between (H,He) and (H, s), with H

$← C, s
$← Fn

q , e
$← S(Fn

q , t). This new
assumption has to be proven secure, as the structure of the matrices in C leaks information to the
adversary. The choice of a proper class of codes, and the analysis of syndrome decoding restricted to
this class, is at the core of this thesis.

If we can consider variants where we restrict ourselves to specific classes of matrices, it is also
possible to sample the error vectors from a specific class. For now we consider the error vector to be
sampled uniformly at random in S(Fn

q , t), but we will also consider the regular distribution at some
point in the thesis. Other exotic noises distributions and their associated SD-like assumption will be
considered in Chapter 6.

Definition 2.4.8 (t-regular sparse vector). A t-regular sparse vector is defined as follows: Sample
(ui)1⩽i⩽t, t unit vectors of size n/t. Return e = (u1 � · · ·�ut) where � denotes vertical concatenation.
Let call r- S(Fn

q , t) the set of such t-regular sparse vectors. The associated syndrome decoding assumption
(which involves distinguishing (H, s) from (H,He : e

$← r- S(Fn
q , t))) is called the Regular Syndrome

Decoding assumption and denoted r- SD. We said a noise is (c, t)-block-wise regular when it is the
vertical concatenation of c different t-sparse vectors.

2.4.2.2 Syndrome Decoding over a Ring

LetR be a ring equipped with a structure of Fq-vector space. Let B = (bi)i : bi ∈ R be a basis
of the Fq-vector space. In what follows, we will denote |B| by B. For all x ∈ R, x =

∑
b∈B xbb.

Therefore, the vector space structure gives a natural isomorphism between R and FB
q . Let ϕB be

this isomorphism. Given the Hamming weight defined over vectors of FB
q (Definition 2.4.2), we can

define the Hamming weight overR, denoted wtR(·). For x ∈ R, wtR(x) = wt (ϕB(x)). Note that
the Hamming weight does not depend on the order of coordinate we consider, and therefore the
ordering made on the basis does not matter. As the Hamming weight does not depend on the order of
the coordinates, the Hamming weight is then well defined. Consequently, this Hamming weight over
R allows us to similarly define the subset S(R, t) ⊂ R of elements that are of Hamming weight at
most t. With this, we can already state the equivalent of SD but over this generalR.

Definition 2.4.9 ((Decisional) Syndrome Decoding Assumption over a Ring R). Let (n, k, t) =
(n(λ), k(λ), t(λ)) be parameters polynomial in the security parameter λ, and let R equipped with a
basis. The goal of the decisional ring syndrome decoding problem is to distinguish, with a non-negligible
advantage, between the distributions

D0 : (a, s) where a, s $← R and
D1 : (a, e0 + a · e1) where a $← R, ei $← S(R, t)).
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The decisional syndrome decoding over a ring assumption, denoted by (n, k, t)q-R-SD or R-SD
when the context is clear, states that this problem is hard. That is, for every polynomial-time algorithm
A, it holds that

∣∣∣∣∣ Pr
a

$← R, (e0,e1)
$← S(R,t)

[ A(a, e0 + ae1) = 0 ]− Pr
(a,s)

$← R
[ A(a, s) = 0 ]

∣∣∣∣∣ ⩽ negl(λ),

where negl denote a negligible function.
The module version is the following generalization: it asks to distinguish, with a non-negligible

advantage, between the distributions:

D0 : (a, s) where a $← (R)c−1, s $← R
D1 : (a, e0 + a1e1 + · · ·+ ac−1ec−1) where a $← (R)c−1, e = (e0, . . . , ec−1)

$← (S(R, t))c),

where c is called the compression factor.

Remark 2.4.5. In the above definition we assumed a regularity in the error: each ei is sampled as
a random sparse element of the ring (ei $← S(R, t)). In general this has not to be the case, and we
could choose e to be sampled from c element of R such that the sum of the weight of all the ei is
equal to ct, instead of having the same weight for all ei. This would be a valid general SD assumption.
Nevertheless in this manuscript we will always consider this regular variant where all the ei are
sampled from S(R, t).

Remark 2.4.6 (FromR-SD to SD). For a ∈ R, let fa : R → R, fa(x) = ax denote the multiplica-
tion by a. Remind that ϕB(x) denotes the vector in FB

q which corresponds to the entries of x when
written in the basis B. For a fixed basis, there exists a unique matrix Ma known as the matrix of
multiplication by a, such that ϕB(fa(x)) = MaϕB(x). The matrix is defined as follows:

Ma =


ϕB(ab0)

...
ϕB(abi)

...
ϕB(abB−1)

 .

Next, the moduleR-SD can be reformulated as a SD problem with

H =
[
IB Ma1 · · · Mac−1

]
and e = (ϕB(e0) � · · · � ϕB(ec−1)), where � denotes the vertical concatenation, a (c, t)- blockwise-
regular noise version of size cB, and weight ct. The coefficient c is referred to as the compression factor,
as H compress the error vector by a factor c when it multiplies it (from cB to B). H corresponds to
a code of rate (c− 1)/c.

2.4.3 The Quasi-Abelian Syndrome Decoding Problem

In this section, we recall the Quasi-Abelian Syndrome Decoding assumption (QA-SD), which was
introduced in [BCCD23]. It is a restricted version of the syndrome decoding assumption in the case
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of Quasi-Abelian Codes which generalize quasi-cyclic codes. Let G be a finite abelian group. We
define the group algebra associated to G as follows:

Fq[G] :=

∑
g∈G

agg | ag ∈ Fq

 ,

which is the set of all the formal linear combinations of elements of G, with coefficients in Fq . One
can endow Fq[G] with a commutative convolution product to make it an algebra of dimension |G|.

∑
g∈G

agg

∑
g∈G

bgg

 :=
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.

There exists in Fq[G] a canonical notion of Hamming weight: we define the Hamming weight wtG(·)
of an element as the number of non-zero coordinates when written in the basis (g)g∈G (independent
of the ordering chosen). This allows us to define the set of t-sparse elements of Fq[G], denoted
S(Fq[G], t) = {x | x ∈ Fq[G], wtG(x) = t}.

2.4.3.1 Quasi-Abelian Codes

We can define codes over Fq[G]. Given a matrix

Γ =

γ1,1 . . . γ1,k
... . . . ...
γℓ,1 . . . γℓ,k

 ∈ (Fq[G])ℓ×k,

the quasi-G code defined by Γ is, in a similar fashion as before,

C := {Γm | m = (m1, . . . ,mk)
⊺ ∈ (Fq[G])k}.

That is Γ is the generator matrix of the code, written over Fq[G]. A random matrix Γ would be
a matrix whose entries γi,j ∈ Fq[G] are chosen at random. Because Fq[G] enjoy a vector space
structure, once you fix an order among the element of G, there exists an isomorphism ϕ from Fq[G]
to Fn

q which associates a ∈ Fq[G] to (a0, . . . , an−1). Further, we can represent the multiplication by
an element a ∈ Fq[G] by the following matrix:

Ma =

 φ(a · g0)
...

φ(a · gn−1)

 ∈ Fn×n
q ,

where each row is the vector representation of a shift of a by some element gi ∈ G.

Remark 2.4.7. In the case G = Z/nZ , the quasi-Z/nZ code is defined by a matrix with circulant
blocks of the following shape over Fq :



20 Technical Background

H =



a
(0,0)
0 a

(0,0)
1 . . . a

(0,0)
n−1

a
(0,0)
n−1 a

(0,0)
0 . . . a

(0,0)
n−2

...
... . . . ...

a
(0,0)
1 a

(0,0)
2 . . . a

(0,0)
0

. . .

a
(0,k−1)
0 a

(0,k−1)
1 . . . a

(0,k−1)
n−1

a
(0,k−1)
n−1 a

(0,k−1)
0 . . . a

(0,k−1)
n−2

...
... . . . ...

a
(0,k−1)
1 a

(0,k−1)
2 . . . a

(0,k−1)
0

... . . . ...

a
(ℓ−1,0)
0 a

(ℓ−1,0)
1 . . . a

(ℓ−1,0)
n−1

a
(ℓ−1,0)
n−1 a

(ℓ−1,0)
0 . . . a

(ℓ−1,0)
n−2

...
... . . . ...

a
(ℓ−1,0)
1 a

(ℓ−1,0)
2 . . . a

(ℓ−1,0)
0

. . .

a
(ℓ−1,k−1)
0 a

(ℓ−1,k−1)
1 . . . a

(ℓ−1,k−1)
n−1

a
(ℓ−1,k−1)
n−1 a

(ℓ−1,k−1)
0 . . . a

(ℓ−1,k−1)
n−2

...
... . . . ...

a
(ℓ−1,k−1)
1 a

(ℓ−1,k−1)
2 . . . a

(ℓ−1,k−1)
0



.

Proposition 2.4.3. Let G be a finite abelian group. G is isomorphic to a direct product of cyclic groups
G ≃ Z/d1Z× · · · × Z/drZ where the di’s can be equal. Then,

Fq[G] ≃ Fq[X1, . . . , Xr]/(X
d1
1 − 1, . . . , Xdr

r − 1),

and the isomorphism is given by (k1, . . . , kr) 7→ Xk1
1 · · ·Xkr

r , and extended by linearity.

Definition 2.4.10 ((Decisional) Quasi-Abelian Syndrome Decoding Assumption ). Let (n, k, t) =
(n(λ), k(λ), t(λ)) be parameters polynomial in the security parameter λ, and let G be an abelian
group. The goal of the decisional Quasi-Abelian Syndrome Decoding problem is to distinguish, with a
non-negligible advantage, between the distributions

D0 : (a, s) where a, s $← Fq[G] and
D1 : (a, a · e1 + e2) where a $← Fq[G], ei

$← S(Fq[G], t)).

The Decisional Quasi-Abelian Syndrome Decoding assumption, denoted by QA-SD , states that this
problem is hard. That is, for every probabilistic polynomial-time algorithm A, it holds that

∣∣∣∣∣ Pr
a

$← Fq [G], (e0,e1)
$← S(Fq [G],t)

[ A(a, ae0 + e1) = 0 ]− Pr
(a,s)

$← Fq [G]

[ A(a, s) = 0 ]

∣∣∣∣∣ ⩽ negl(λ).

where negl denotes a negligible function.
The module version of QA-SD is defined in the same manner as for R-SD. It asks to distinguish,

with a non-negligible advantage, between the distributions

D0 : (a, s) where a $← (Fq[G])c−1, s
$← Fq[G] and

D1 : (a, e0 + a1e1 + · · ·+ ac−1ec−1) where a $← (Fq[G])c−1, e = (e0, . . . , ec−1)
$← (S(Fq[G], t))c.



2.5 Secure Multiparty Computation 21

Similarly as before, we can use the matrix representation of each element ai ∈ a ∈ (Fq[G])c−1 to
reformulate the problem as a standard syndrome decoding problem with

H =
[
I|G| Ma1 . . . Mac−1

]
and e = (ϕ(e0) � · · · � ϕ(ec−1)), where � denotes the vertical concatenation. e is a (c, t)-blockwise-
regular 2 noise vector of size c|G|, and weight ct, with c the compression factor. The thus defined matrix
H corresponds to a code of rate (c− 1)/c.

2.5 Secure Multiparty Computation
Secure Computation (also called MPC) is broadly defined as the set of all the techniques that let

N parties perform computations on private information. Let f be the function to be computed and
let xi for 1 ⩽ i ⩽ N be the private input of party i. The goal is therefore to compute the value of
f(x1, . . . , xN ) while at the same time ensuring that no party, or group of parties, learn anything
beyond what can be implied by the result of the function and its inputs.

MPC was introduced in the early days of modern cryptography, first by Andrew Yao [Yao82] for
the two-party case, and by Goldreich, Micali, and Wigderson for the multiparty case [GMW87]. Next,
Beaver [Bea91; Bea92] and subsequently Micali and Rogaway [MR92] defined precisely the study of
privacy in secure computation protocols. The definitions and the models were later refined in 2000
by Canetti [Can01]. If MPC was at its early stages considered mostly as a curiosity with impractical
protocols, it has gradually evolved, becoming more and more efficient. This area of cryptography is
nowadays really promising, with numerous applications, as already mentioned in the introduction
(Chapter 1).

We will first give an overview of the standard context and of the assumptions commonly made
when working in MPC (Section 2.5.1), after which we will give a formal definition of MPC (Sec-
tion 2.5.2). We will present some important functionalities that will be useful in this manuscript
(Section 2.5.3) and finally present a major technique enabling us under certain conditions to achieve
fast MPC (Section 2.5.4).

2.5.1 Description of the Framework

MPC comes in many flavors. It has been around for over 40 years, and even if it was a niche
specialization for a long time, it became increasingly popular and widespread. Next, we describe the
common assumptions in MPC, and more specifically the one related to our use case. The presentation
below follows some part of [Gol09a; Cou23].

2.5.1.1 Communications Between Parties

MPC is all about different parties securely doing computation. To perform this computation,
the parties have no choice but to exchange messages together. The first natural question would be
how communication works between the parties. Classically, MPC supposes that the parties can send
messages with perfect encryption and that everyone can talk to everyone, via authenticated channel.
All attacks that consist in tampering with the messages or applying man-in-the-middle techniques
are de facto discarded. It is also widely assumed that all communications proceed synchronously,
getting rid of all the difficulties inherent to distributed computing. This choice may seem idealistic -
and it is! - but the motivation is to compartmentalize properly the difficulties of the problems we

2. Definition 2.4.8
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have to solve. These not-mentioned “real world” difficulties are in fact subjects of study on their
own, and therefore this choice was made as a way to simplify an already quite complicated area.
Nonetheless, we mention that if this assumption is usually the case in standard MPC, and throughout
this manuscript, some areas of MPC try to understand what would happen if the network is unstable
(for example incomplete or with faults).

2.5.1.2 Parties and Corruptions

MPC aims to perform secure computation with multiple parties. In the manuscript, we will
denote by N the number of parties. The minimal number of parties requested to do MPC is therefore
N = 2. This particular case defines a subclass of MPC protocol on its own, called 2PC. It serves as a
minimal case on which one can build in order to obtain protocols for N parties. In such an N -party
protocol, it would be unrealistic to think that an adversary could corrupt just one party. Suppose
there are N different parties P1, . . . , PN . An adversary could corrupt several parties, the subset PS ,
where S ⊂ [1, N ]. Therefore, the adversary might be able to access sensitive data by pooling the
information of each corrupted party. This is why security is restated as follows: even if a group S of
size |S| = t parties combines the information they gathered during the execution of the protocol,
they should not be able to get more information than what is implied by the result of the function
and their inputs. The value t introduced above is called the corruption threshold. Depending on the
security model, the number of corruption a scheme can support varies. In the thesis, we will mostly
describe protocols for only two players - and specify when more than two players are involved.

2.5.1.3 Functionalities

We abstract the function to be computed as a functionality. For a protocol Π with N parties,
we call functionality a probabilistic function f : ({0, 1}∗)N → ({0, 1}∗)N which associates x =
(x1, . . . , xN ) to f(x) = (f1(x), . . . , fm(x)). We say that a protocol Π realizes the functionality f
when at the end of the protocol the i-th party obtains the random variable fi(x1, . . . , xN ).

For the sake of convenience, we assume that all players’ input sizes are equal. While this
assumption may not always hold, we can address discrepancies by padding shorter inputs with zeros.
This ensures that protocols with unequal input sizes can be transformed into ones with equal-sized
inputs.

2.5.1.4 Malicious Security and Semi-Honest Security

Two types of security are classically considered in MPC: malicious security tackles the case of
an adversary that would make the corrupted parties deviate arbitrarily from the protocol. That is,
the corrupted parties may also send wrong messages, or to the wrong recipient. On the contrary,
semi-honest security encompasses security against adversaries that follow the protocol correctly but
want to learn as much as possible from the other player’s inputs. Namely, they will remember the
different messages received, coin tosses made, and results obtained, and try to derive from it new
information. This is why it is also called honest-but-curious.

In this thesis, we focus only on semi-honest security. The question of malicious security, more
involved, will not be studied apart from when expressly mentioned.

2.5.1.5 Universal composability

In this manuscript we use a result from [Gol09b]: in the context of semi-honest security, it is
guarantee that protocols remain secure even when arbitrarily composed with other instances of the
same or other protocols: we have universal composability for free. Namely, a high-level protocol
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proven secure assuming the existence of a perfect oracle (an ideal functionality) will still be secure if
we replace this ideal functionality with a real protocol securely computing the same functionality.

2.5.2 Formal privacy

In order to tackle precisely the security, we should first define precisely the information that the
adversary knows when performing the protocol. This is commonly referred to as the view of a party.

Definition 2.5.1 (View of a party). Let P1, . . . , PN denote parties that want to compute a function f
on joint input x = (x1, . . . , xN ). Then the view of party Pi is defined as all the messages received by
Pi during the execution of the protocol, and all the different random coin tosses it may have made. We
denote it as Viewi(x). For S ⊂ [1, N ], we denote by ViewS(x) the joint view of each parties (Pi)i∈S .
Similarly, PS := (Pi)i∈S and xS := (xi)i∈S .

Further, we describe the output distribution of the protocol.

Definition 2.5.2 (Output Distribution). We denote by Oi(x) the output distribution of the output
of Pi after the execution of the protocol Π on joint input x. For S ⊂ [1, N ], we write by OS(x) for
(Oi(x))i∈S .

We now have all the tools in order to formally define security against semi-honest adversaries.

Definition 2.5.3 (t-Privacy for probabilistic functionalities). Let f : ({0, 1}∗)N → ({0, 1}∗)N be a
N party probabilistic functionality. We say that a protocol Π satisfies t-privacy against semi-honest
adversaries if:

— f is correctly computed.

— There exist a probabilistic polynomial time adversary Sim such that, for every subset S ⊂ [N ] of
size |S| = t,

{ViewS(x),OS(x)} ≈ {(a, b) | a← Sim(S,xS , fS(x)), b← f(x)} ,

where ViewS is the joint distribution of the views and OS(x) the output of the corrupted parties.

One can convince oneself that the equation exactly encompasses what is required: the first entry
of the tuple indicates that on each pair of inputs, it is possible to simulate the views of a group of
parties solely from the joint input and output of these parties. While this is sufficient in the case
of deterministic functionality, one has to be careful when dealing with random functionalities. We
have to be sure that the distribution of the output of the protocol matches the distribution of the
output of the random functionality being emulated. Note that this is trivially the case when we have
a deterministic function.

2.5.2.1 Equivalence to the Ideal world vs Real World model

Another model exists for defining the security of MPC protocols: the ideal world vs real world
model. In an ideal world, a trusted party T exists. A protocol Π to compute a functionality f is
therefore straightforward. Each party Pi sends its private input xi to T , who computes f(x1, . . . , xN )
and outputs the result to all the parties. In an ideal world, an adversary cannot do anything. Indeed, in
such a model, the adversary could corrupt any party Pi, or even a group of parties Pi1 , . . . , Pit , S =
{i1, . . . , it} ⊂ [1, N ] ; but not T which is by definition a trusted party. Then, the adversary does
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nothing apart from sending its inputs and then receiving the result of the function. It has no more
power, and therefore, this achieves the MPC requirements: the adversary does not learn more than
what is implied by the protocol. This model is called ideal world because we suppose the existence of
a perfect trusted party T , which is highly unrealistic. However, the interest of the ideal world is that
it encompasses the security requirements we want, as they are trivially achieved in this model. In
the real world however, the situation is less pleasant: there are no trusted parties. In this real world,
parties will communicate to compute the result of the function, sending messages to each other. Since
the adversary can corrupt an arbitrary set of parties, it could gain information from those messages.
In order for the real world to be secure we would require that everything that the adversary could
achieve in the real world could also be achieved in the ideal world. This alternative definition of
security is actually equivalent to the one presented above using a simulator (see [Gol09a]).

2.5.3 Cornerstone Functionalities in MPC

Next, we present basic but cornerstone functionalities in MPC. We will describe them in terms of
ideal functionalities: it encapsulates exactly what the functionality is expected to do, as it would in
an ideal world.

2.5.3.1 Additive Secret Sharing

Secret sharing is an essential functionality that encapsulates very important cryptographic
properties while being simple. In essence, an additive secret-sharing scheme with N players divides
a secret s into N different shares. These shares, when summed up, reconstruct to the original secret
s, while ensuring that no information about s or the other shares is revealed as long as only t ⩽ n−1
shares are compromised.

Definition 2.5.4 (Additive Secret Sharing). The functionality is described in Figure 2.2. Let s ∈ Fq be
a fixed secret value. An additive secret sharing scheme produces for each party an additive share of the
secret value, that we denote by [[s]]i for party i. It has to verify the following properties:

— Correctness:
∑n−1

i=0 [[s]]i = s.
— Information theoretic security: Let S ⊂ [N ], |S| = t < n. The knowledge of [[s]]S := ([[s]]i)i∈S

reveals no information about the secret in the information-theoretic sense.

Secret-sharing offers information-theoretic security, which implies that even with unbounded
computing power, no adversary can break the security with more advantage than guessing at random.
It exemplifies perfect security.

Alice

SS

Bob

s

⊥ ⊥

[[s]]0 [[s]]1

Figure 2.2 – Ideal functionality of Secret Sharing, 2PC case
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Lemma 2.5.1 (Linearity of Secret-Sharing). The map associating s ∈ Fq to its share [[s]]i is linear.

Proof. We check that for x ∈ Fq and y ∈ Fq , the following holds

n−1∑
i=0

[[x]]i + [[y]]i =

n−1∑
i=0

[[x]]i +

n−1∑
i=0

[[y]]i = x+ y.

This proves that the addition of shares is a share of the addition. The same applies to multiplication
by a constant.

Remark 2.5.1. A party P0 holding an element x ∈ Fq can easily split x into shares and send the
shares to the other parties in order for the group to have shares of x. To do this, the party can simply
send to each other party a random element ri as its share and set his share to be [[x]]0 = x−

∑n−1
i=1 ri.

Note that in this case, party P0 still knows the shared value x.

2.5.3.2 Oblivious Transfer

Now, we describe another fundamental cryptographic primitive: the Oblivious Transfer.

Definition 2.5.5 (Oblivious Transfer). The ideal functionality is displayed in Figure 2.3. An Oblivious
Transfer (OT ), denotes a two-party protocol with a sender and a receiver. The sender holds two inputs
x0, x1 ∈ Fq , while the receiver possesses a selection bit b ∈ F2. At the end of the protocol, the receiver
should get the value xb. The security requirements are as follows:

— Sender Security: The receiver does not learn any information about the value x1−b
— Receiver Security: The sender does not learn any information about the value b.

Sender

OT

Receiver

(x0, x1) b

⊥ xb

Figure 2.3 – Ideal OT functionality

The concept of Oblivious Transfer is essentially encapsulated by its name: it is exactly as if the
sender manages to give to the receiver the value corresponding to the selection bit b, while not
knowing which value he is sending. The concept of OT can be generalized: k-out-of-n OT denotes
the situation in which the sender has n inputs, among which the receiver can choose k values. OT is
one of the fundamental building blocks for secure computation.

Remark 2.5.2 (Construction of an OT). We thereafter provide a standard construction of OT,
following the original construction from [BM90]. The construction uses the famous discrete logarithm
assumption as a hard problem to prove its security. Discrete logarithm asks to find from (g, h = gk)
the exponent of h, that is k. Let G be a group of prime order p, and let g ∈ G be a generator of
G, and H : G → {0, 1}n be a hash function. Suppose that the sender holds x0, x1 ∈ {0, 1}n two
messages, and the receiver holds a bit b ∈ F2. The protocol is as follows:
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— The sender samples a random element r $← G, and sends it to the receiver. The receiver then
samples k $← Zp, and lets pkb = gk and pk1−b = r/gk. He sends (pk0, pk1) to the sender.
Note that the receiver does not know the discrete logarithm of pk1−b. The sender can verify
that pk0pk1 = r.

— The sender constructs D0 = (gr0 , H(pkr00 ) ⊕ x0), D1 = (gr1 , H(pkr11 ) ⊕ x1) : that is, he
encrypts the messages (x0, x1) with keys (pk0, pk1), and send (D0, D1) to the receiver.

— The receiver can decrypt Db := (u1, u2), by computing xb = H(uk1)⊕ u2.
It is straightforward to check the correctness of the protocol. Moreover, it is interesting to see that the
sender cannot learn any information on b and that it achieves information-theoretic security. Indeed,
the sender can only see two equivalent keys pk0, pk1. On the receiver side, learning x1−b would
be equivalent to breaking the decision Diffie-Hellman assumption, a very standard cryptographic
assumption which states that given (g, gx, gy) it is still hard to distinguish gxy from a random element
of G.

Another variant is the OT is the Random Oblivious Transfer (ROT ). The functionality is displayed
in Figure 2.4. It consists in sampling randomly the values x0, x1 and b, and outputting (x0, x1) to the
sender and b, xb to Bob. This random variant of OT is the one that we will cover the most in the rest
of the manuscript, and we will abuse the notation OT to denote it.

Sender

ROT

Receiver

⊥ ⊥

(x0, x1) (b, xb)

Figure 2.4 – Ideal ROT functionality

2.5.3.3 Oblivious Linear Evaluations

Definition 2.5.6 (Oblivious Linear Evaluations). The ideal functionality is displayed in Figure 2.5. An
Oblivious Linear Evaluation(OLE ), denotes a two-party protocol, with a sender and a receiver. The
sender holds two inputs u, v ∈ Fq , and the receiver holds an evaluation point ∆ ∈ Fq . At the end of the
protocol, the receiver should get the value w = u ·∆+ v. The security requirements are as follows:

— Sender Security: The receiver does not learn any additional information on u, v than what is
implied by ∆, w.

— Receiver Security: The sender does not learn any information about∆, w.

A generalization of OLE is Vector Oblivious Linear Evaluation(VOLE ), where u, v, w are now vectors:
u,v,w such that w = u ·∆+ v.

The goal of OLE is again clear from its name: it is an evaluation of a linear function (· → u×·+v),
but with no complete information for both sides. The receiver knows the evaluation point and the
result but does not know the function, while the sender knows the function but does not know the
evaluation point. OLE can be seen as a generalization of OT. In an OT, the value xb can always be
expressed as follows:

xb = (1− b)x0 + bx1 = (x1 − x0)b+ x0
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Therefore, up to writing u = (x1−x0), ∆ = b and v = x0, this corresponds exactly to the description
of an OLE in the case F2.

Sender

OLE

Receiver

(u, v) ∆

⊥ w = u ·∆+ v

Figure 2.5 – Ideal OLE functionality

Again, another flavor of OLE is random OLE (i.e. ROLE ) where u, v, and ∆ are not known
beforehand by the players but are sampled at random during the execution of the protocol. The
functionality outputs (u, v) to the Sender and (∆, w := u ·∆+ v) to the Receiver. Exactly as before,
we abuse notation and denote by OLE an instance of random OLE, apart when explicitly stated
otherwise. Note also that an ROLE can be rewritten using secret-sharing: giving (u, [[u ·∆]]1) to the
sender and (∆, [[u ·∆]]0) to the receiver describe an OLE. We will also use this notation throughout
the manuscript.

Sender

ROLE

Receiver

⊥ ⊥

(u, v) (∆, w = u ·∆+ v)

Figure 2.6 – Ideal ROLE functionality

Lemma 2.5.2 (Construction of OLE from OT, from [Gil99]). An OLE over Fq can be obtained from
t = log(q) invocations to an OT.

Proof. We assume that q is prime for the proof. The protocol is as follows:
— The sender samples two random elements u, v ∈ Fq . The receiver samples a random ∆ ∈ Fq .

Let (∆0, . . . ,∆t−1) be the description of ∆ in binary.
— The sender splits v in shares vi such that v =

∑t−1
i=0 vi.

— The sender and the receiver perform t distinct OT protocols with sender inputs (vi, vi + 2iu)
and with receiver inputs ∆i.

— The receiver therefore obtains vi +∆i2
iu, and outputs

∑
i(vi +∆i2

iu).
It is easy to check the correctness:

t−1∑
i=0

vi +∆i2
iu =

t−1∑
i=0

vi +

t−1∑
i=0

∆i2
iu = v +∆u.

Regarding security, the sender does not learn anything from the t OT protocols, and the security
of OT is enough to protect information on ∆. On the other hand, the receiver learns either (vi)
or vi∆i2

iu at each step, but because the vi’s are just random shares of v, this does not leak more
information on v than it should.
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2.5.3.4 Beaver Triples

We now present a slightly more involved and very useful primitive known as Beaver Triples,
named after the work of Beaver [Bea91; Bea92]. They are also called multiplication triples.

Definition 2.5.7 (Beaver Triples). The ideal functionality is displayed in Figure 2.7. A Beaver Triple
(BT ) denotes a two party-protocol. The protocol ensures that each player obtains [[a]], [[b]], [[c]] with:

a
$← Fq, b

$← Fq, c = a · b.

A Beaver Triple is therefore a protocol that gives the players additive shares of values a and b,
along with additive shares of their product c = a · b. The interest relies on the fact that additive
sharing does not commute with multiplication.

Alice

BT

Bob

⊥ ⊥

([[a]]0, [[b]]0, [[c]]0) ([[a]]1, [[b]]1, [[c]]1)

a · b = c

Figure 2.7 – Ideal BT functionality

Lemma 2.5.3 (construction of Beaver Triples). A random Beaver Triple can be constructed from two
instances of OLE (or OT in the case of F2).

Proof. Let the parties hold two random OLEs. We want the parties to obtain shares of elements
a, b, c where a, b are random elements and c = a · b. Therefore, Alice holds (u1, [[u1∆1]]0) and
(u2, [[u2∆2]]0) and Bob holds (∆1, [[u1∆1]]1) and (∆2, [[u2∆2]]1). Let Alice (resp Bob) set the value
[[c]]0 (resp. [[c]]1) to be equal to u1u2 + [[u1∆1]]0 + [[u2∆2]]0 (resp. ∆1∆2 + [[u1∆1]]1 + [[u2∆2]]1 ).
Let a = u1 +∆2, b = u2 +∆1, and c = a× b. Then one can verify that

c = a× b = u1u2 + u1∆1 + u2∆2 +∆1∆2 = [[c]]0 + [[c]]1,

and therefore parties have thus constructed shares of c = a× b. Note that because the two OLEs we
consider were random instantiations, the values a = u1 +∆1 and b = u2 +∆2 remain random.

2.5.3.5 Function Secret Sharing

The last primitive we would like to present is way more involved than the previous ones and
much more recent. It is an important building block of the cryptographic constructions of this
manuscript. Function Secret Sharing (FSS ), introduced in [BGI15; BGI16], is the analog of additive
secret sharing for functions. The following definitions are mostly taken from [BCGI+20b]. An FSS

scheme splits a secret function f : D → G, where G is an Abelian group, into two functions f0, f1
(the shares of f ). The two functions f0, f1 are supposed to be pseudorandom functions: they are
both represented by a key, respectively k0, k1. The requirements are that f0(x) + f1(x) = f(x) for
every x ∈ D and that both k0 and k1 hide f . The ideal functionality is displayed in Figure 2.8.

Definition 2.5.8 (Function Secret Sharing). Let C = {f : D → G} be a class of function. We denote
by desc(f) the description of f , which also specifies the input domain D and an Abelian group (G,+)
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as the output domain. A (2-party) function secret sharing (FSS) scheme for C is a pair of algorithms
FSS = (FSS.Gen,FSS.Eval) with the following syntax:

— FSS.Gen(1λ, desc(f)) is a Probabilistic Polynomial Time (PPT) algorithm that given security
parameter λ and a description of f ∈ C outputs a pair of keys (k0, k1). We assume that the keys
specify D and G.

— FSS.Eval(b, kb, x) is a polynomial-time algorithm that, given a key kb for party b ∈ {0, 1}, and
an input x ∈ D, outputs a group element yb ∈ G.

The scheme should satisfy the following requirements:

— Correctness: For any f ∈ C and x ∈ D, we have

Pr
(k0,k1)

$← FSS.Gen(1λ,desc(f))

 ∑
b∈{0,1}

FSS.Eval(b, kb, x) = f(x)

 = 1.

— Security: For any b ∈ {0, 1}, there exists a PPT simulator Sim such that for any polynomial-size
function sequence fλ ∈ C, the distributions {kb | (k0, k1) $← FSS.Gen(1λ, fλ)} and {kb $←
Sim(1λ, Leak(fλ))} are computationally indistinguishable.

In the constructions we use, the leakage function Leak : {0, 1}∗ → {0, 1}∗ is given by Leak(fλ) =
(D,G), namely, it outputs a description of the input and output domains of f .

We also define a full-domain evaluation algorithm, FSS.FullEval(b, kb), which outputs a vector
of |D| group elements, corresponding to running Eval on every element x in the domain D. For the
type of FSS we consider, FSS.FullEval is significantly faster than the generic solution of running |D|
instances of Eval. In the manuscript, we will use FSS for point functions and sums of point functions,
as defined below.

Alice

FSS

Bob

f

⊥ ⊥

[[f ]]0 [[f ]]1

Figure 2.8 – Ideal functionality of FSS in the case of 2PC

FSS is a highly non-trivial primitive. As for now, very few classes of functions can be efficiently
shared via FSS schemes. We present thereafter the one at the core of the main protocols of this thesis:
the Distributed Point Functions.

Definition 2.5.9 (Distributed Point Function (DPF) [GI14; BGI15]). Denote by [n] the set of integers
{0, . . . , n− 1}. For the abelian group Fq , α ∈ [n], and β ∈ Fq , the point function fα,β is the function
fα,β : [n]→ Fq defined as

fα,β(x) :=

{
β if x = α,
0 otherwise.
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A distributed point function (DPF) is an FSS scheme for the class of point functions {fα,β : [n]→ Fq |
α ∈ [n], β ∈ Fq}.

In other words, a point function takes only one non-zero value β, at the specific input x = α. An
important point to note here is the following: the point function fα,β can be represented by a vector
of Fn

q of Hamming weight 1, i.e a vector of the form

(0, . . . , 0, β, 0, . . . , 0),

where β is in the α-th position. The DPF can therefore be used to share vectors of weight 1.

The DPF construction. We present thereafter the DPF from [GI14; BGI15]. We assume that the
domain of the DPF is a power of 2, that is n = 2m, and assume that q = 2 (and therefore β = 1).
This choice is made for simplicity of demonstration while it is possible to construct a DPF for any n
and any q. To create a DPF, we want Alice and Bob to hold respectively fa and fb, such that both fa
and fb appear to be random. In Section 2.3.3.1, we have shown that given a seed and a PRG, one
can create a pseudorandom function, thanks to the GGM tree-based construction. Nevertheless if
we give the parties the same seed s, players will hold additives shares of the all-zero function, and
not a point function. The protocol is built upon a tweaked version of the GGM tree, and use a PRG

G : Fλ
q → F2λ+2

q , that is just slightly more than length doubling. Let s be the seed of size λ, and let
t ∈ Fq be an additional value called a control element. We let G0 and G1 be respectively the two
parts of size λ + 1 of the output of G, that is G(s) = G0(s)||G1(s). We construct a tree as in the
GGM construction:

— Label the root by (s, t).
— We label a node ν with label L(ν) = (s(ν), t(ν)). Consider its two children ν0 and ν1.

We label them by respectively L(ν0) = (s(ν0), t(ν0)) and L(ν1) = (s(ν1), t1(ν)), where
G(s(ν)) = G0(s(ν))||G1(s(ν)) := s(ν0)||t(ν0)||s(ν1)||t(ν1).

We index the leaves with i ∈ [2m] where m is the number of levels of the tree, and denote νi the
i-th leaf. For a leaf νi, the evaluation path of νi denotes all the nodes from the root to νi. We define
fk(i) as follows: compute all the labels of the nodes in the evaluation path corresponding to νi, that
is, compute successively all the labels of the nodes from the root to the leaf, recover its the label of
the leaf (s(νi), t(νi)) and return s(νi). For the same reasons as in the original GGM tree, it defines a
pseudorandom function. Now, consider that we want the two pseudorandom functions fa and fb to
differ on exactly the specific entry α. The leaf associated to α is να. Consider a node ν in the tree,
and look at the labels La(ν) and Lb(ν) associated respectively by Alice and Bob on ν. Using some
additional correction words, we show how to maintain the following invariant at each step:

— If ν is not in the evaluation path, then the labels are equal: La(ν) = Lb(ν).
— If ν is in the evaluation path then the sa(ν) and sb(ν) are indistinguishable from two indepen-

dent and uniformly distributed vectors, and ta(ν) + tb(ν) = 1.
This invariant is motivated by the fact that if the node is on the evaluation path, the associated
evaluation is still pseudorandom, whereas if it is not on the evaluation path then the associated
evaluation is the same for both players and sums up to 0.

We will show that this property is true by recursion. First, we do not include the correction
words to precisely identify where they are needed. Let us suppose that the invariant holds for a node
ν. First, assume that ν is outside the evaluation path of να. Note that the children of ν will not be in
the evaluation path of να. We apply the recursion hypothesis: the respective labels La, Lb of Alice
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sa(ν)||ta(ν)

sa(ν0)||ta(ν0) sa(ν1)||ta(ν1)

Alice’s tree

sb(ν)||tb(ν)

sb(ν0)||tb(ν0) sb(ν1)||tb(ν1)

Bob’s tree

level i

level i+ 1

Figure 2.9 – Representation of the labels of a node on the evaluation path of Alice’s and Bob’s tree,
and of its children, before correction. The evaluation path is represented in red.

and Bob are equal. It is straightforward to see that their children will have the same labelled: the
labels of the children are uniquely determined by the one of their parents. Therefore, the recursion
property is verified in this case. Now suppose that ν is on the evaluation path of να. Then, one of
its two children ν0 and ν1 will not be in the evaluation path anymore while the other will stay in it.
The recursion hypothesis states that sa(ν) and sb(ν) are indistinguishable from being independent
and uniformly distributed. Therefore this property propagates to the labels of the children. This is
a good property for the child that stays on the evaluation path. The difficulty is therefore to make
Alice’s and Bob’s labels of the node that leaves the evaluation path equal, moreover, because we are
hiding the value α to the parties: the parties do not know the evaluation path and therefore which
child is leaving the evaluation path.

The method introduced by Boyle et al. was to add to the key m correction words, one for each
level of the tree. Without a lost of generalities, suppose that we are at level i, and that the child node
that leaves the path is the left hand one. Let wi+1 be a correction words defined as:

wi+1 := G(sa) +G(sb)− (0||0||s̃||1)

where s̃ is a random seed. We replace the way the labels of the children are defined:

(sa(ν0)||ta(ν0)||sa(ν1)||ta(ν1)) = G(sa) + taw
i+1 and

(sb(ν0)||tb(ν0)||sb(ν1)||tb(ν1)) = G(sb) + tbw
i+1

Because of the recursion hypothesis, we have that ta + tb = 1. Suppose that ta = 1. Then, the right
node ν1 is labeled with (sa(ν1), ta(ν1)) = G(sb) + (s̃, 1) by Alice, and with sb(ν1), tb(ν1) = G(sb)
by Bob. The recursion is still verified in this case. As for ν0, the computation gives (sa(ν0)||ta(ν0)) =
(sb(ν0)||tb(ν0)), and therefore La(ν0) = Lb(ν0). We managed to make the node get out of the path
successfully. Note that this new definition changes nothing in the case where the node is not in
the evaluation path of να: in this case, we know that both the labels La(ν) and Lb(ν) are the same,
and therefore, again, their children will be labeled exactly in the same way (G(sa) − tawi+1 =
G(sb)− tbwi+1).

Therefore, for each level of the tree, correction words are needed for the invariant to be correct
and for the construction to work properly. We set the key k of each party to be:

— A seed s ∈ Fλ
q , and a random secret sharing of 1.
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— A correction word per level of the tree, that is m different correction words for a tree of depth
m.

The wi can be computed beforehand during the creation of the DPF keys: from the seed, the
functionality can compute all the labels on the evaluation path and deduce the correction words. Note
that this construction manages to successfully produce a sharing of the DPF into two pseudorandom
functions, but at the same time the correction words manage to hide the value α: indeed because we
hide the correction words for every node, no information about the path can be learned.

The best known DPF construction [BGI16] use any PRG G : {0, 1}λ → {0, 1}2λ+2 and has the
following efficiency features. For m = ⌈ log|G|λ+2 ⌉, the key generation algorithm Gen invokes G at most
2(⌈log n⌉+m) times, the evaluation algorithm Eval invokes G at most ⌈log n⌉+m times, and the
full-domain evaluation algorithm FullEval invokes G at most n · (1 +m) times. The size of each key
is at most ⌈log n⌉ · (λ+ 2) + λ+ ⌈log2 |G|⌉ bits. We will use a simple and generic extension of DPF
to sum of point functions.

Definition 2.5.10 (FSS for sum of point functions (SPFSS )). For S = (s1, . . . , st) ∈ [n]t and
y = (y1, . . . , yt) ∈ Gt, define the sum of point functions fS,y : [n]→ G by

fS,y(x) =

t∑
i=1

fsi,yi(x),

where fs,y is the point function that associates y on entry s and 0 elsewhere. An SPFSS scheme is an
FSS scheme for the class of sums of point functions.

Note that for S = (s1, . . . , st), the function fS,y is non-zero on at most t points. If the elements
of S are distinct, fS,y coincides with a multi-point function for the set of points in S. A simple
realization of SPFSS is by summing t independent instances of DPF: by using the linearity of additive
sharing we obtain additive shares of sum of points function. This construction leads to a key size in
O(t · (log(n)λ+ log(|G|))) and the number of operations of the full domain evaluation is dominated
by tn group operations and evaluations of a PRG.

We will further explain (in Section 5.5.3) an optimization in the case of G = Fq , and with
(c, t)-blockwise-regular vector.

To simplify notation, when generating keys for a scheme SPFSS = (SPFSS.Gen,SPFSS.Eval),
we write SPFSS.Gen(1λ, 1n, S,y), instead of explicitly writing fS,y.

2.5.4 Computing a Function Using Secret Sharing and Random Cor-
relations: the GMW Protocol

We present thereafter a technique central to this manuscript, the so-called GMW protocol, named
after its authors Goldreich, Micali, and Wigderson [GMW87]. Let f : Fa+b

q → Fq , a functionality
which maps (x,y) to f(x,y) such that x = (x0, . . . , xa−1) ∈ Fa

q is the input of Alice, and y =

(y0, . . . , yb−1) ∈ Fb
q is the input of Bob. We represent the function f as an arithmetic circuit C , that

is, a directed acyclic graph made up of inputs nodes, multiplications and additions gates. The goal of
the protocol is to preserve the following invariant:

From an additive secret sharing of the inputs of a gate in the circuit, it is possible to compute a secret
sharing of the output of this gate.

This is motivated for three reasons:
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— The players can easily produce an additive secret sharing of their inputs and send the appro-
priate share to the other party.

— We have shown in Lemma 2.5.1 that additive secret sharing is linear and therefore the invariant
is already true for the addition gate.

— The party would obtain at the end a sharing of the result. From there, they can easily reconstruct
it by sending their share to each other.

Nevertheless, the multiplication gate causes a problem because [[xy]] ̸= [[x]]× [[y]].

2.5.4.1 Random Correlations as an Efficient Solution

Beaver came with an improvement over this protocol [Bea92; Bea95]: it consists to giving the
parties an additional value, called random correlation, as a crutch to help.

Definition 2.5.11 (Correlated Randomness and correlation generator). Consider a 2PC protocol with
only two parties, Alice and Bob. Let A, B be sets. Given a binary relation R(a, b) : A×B → {0, 1},
we define the correlation with respect to R as the following set

CR = {(a, b) ∈ A×B | R(a, b) = 1}.

Given a binary relation R, we say we give Alice and Bob additional random correlations when we give
to Alice a and to Bob b such that

(a, b)
$← CR.

A PPT algorithm C is called a correlation generator for a correlation C, if C on input 1λ outputs a pair
of elements (a, b) in C.

Obviously, this can be easily generalized for more than 2 parties. The correlated randomness model is
a model in which we assume that parties are given random correlations, that they can use during the
MPC protocols, as a helper.

Example 2.5.1. The fundamental functionalities presented in Section 2.5.3, when in their random
formulation, can be seen as random correlations. For example the ROT corresponds to A = Fq × Fq ,
B = F2 × Fq and the relation R : A×B → {0, 1} maps ((x0, x1), (b, y)) to xb = y (seen as a logic
assertion).

We assume that Alice and Bob are given a truly random Beaver Triple (see Definition 2.5.7) of the
form ([[a]], [[b]], [[c]] | a · b = c). We will show that with it, the parties can deduce an additive sharing
of xy from [[x]] and [[y]]. The protocol is as follows:

— The parties start by computing sharing of d = a+ x and e = b+ y (this is possible because of
the linearity of additive secret sharing).

— The parties send their shares of d and e to other parties in order to recover d and e plainly. Note
that this does not reveal anything on x and y, because a and b are supposed to be perfectly
random. They, therefore, mask completely the values x and y, with information-theoretic
security.

— Note that
x · y = −ea− db+ ed+ ab.
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— It is to be noted that a, b and c = ab are shared among the players and that this expression of
x · y is linear in these values. One can therefore easily deduce an additive sharing of x · y.

[[x · y]] = −e · JaK− d · JbK + Je · dK + JcK.

Both parties know e and d. They can decide arbitrarily who would add e · d to his share and
who would not, before the execution of the protocol.

Therefore, thanks to the additional random correlation (the Beaver triple) we managed to preserve
the invariant. For each addition gate, Alice and Bob can simply perform the addition of their values
locally, without any communication. For the multiplication gates, each party needs to send 2 log(q)
bits (log(q) for each d and e). In the end, the parties recover a sharing of the result and after
exchanging their shares with each other, they recover the final result.

[[y1]] [[x1]] [[y2]] [[x2]]

+

× ×

+

[[y1]]

[[x1]] [[y2]]

[[x2]][[y1]]

[[x1 + y2]]

[[y1x1]] [[x2(x1 + y2)]]

[[y1x1 + x2(x1 + y2)]]

Figure 2.10 – Representation of the GMW algorithm on the arithmetic circuit of f(x1, x2, y1, y2) =
x1y1 + x2(x1 + y2), with (x1, x2) being Alice’s input, and (y1, y2) being the input of Bob. Labels on
the edges correspond to what the players compute during the execution.

However, we have not discussed the direct downside of the protocol: for each multiplication gate,
a new fresh Beaver triple has to be used. If this is not the case, information on the private intermediate
computation could be easily obtained. For example, assume that the same beaver triple is used
twice, once with inputs (x, y), the second time with inputs (x′, y′). Then, players can compute
d1 − d0 = (x+ a)− (x′ + a) = x− x′ which already reveals information to the players.

2.5.4.2 Efficiency Considerations

This is concerning because, as stated in Chapter 1, the number of multiplication gates in an
arithmetic circuit corresponding to classical functions we might wish to compute can easily reach
millions, if not billions. For instance, [Cou23, Section 2.4] provides an example: for the edit distance
function applied to bit strings of size 4095, the number of AND gates is ∼ 230 and the total computa-
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tional time is approximately 740 hours on a powerful server 3, and the communication cost is about
a terabyte.

Therefore, if the protocol is quite fast in the correlated randomness model, effort needs to be
made in order to generate the correlations, as they are natively non practical both in computation
complexity and in communication complexity.

2.5.4.3 Solutions?

One can wonder whether we can create a random instance of OT faster than with the protocol
presented in Remark 2.5.2. If this is the case to some extent 4, random OT does require public-key
cryptography. The problem lies that public-key cryptography, while being impressive and offering
beautiful results, is also expensive.

Given the unlikely prospects of significantly reducing the costs of OT, another solution arose: in
2003, Ishai, Kilian, Nissim, and Petrank revived the area of MPC with their groundbreaking result
(informally): assuming the existence of an hash function with appropriate security requirements, it is
possible to transform λ OTs to an unbounded number n, for a computational cost dominated by only
three calls to the hash function per created OT. While the computation remains linear in the number
of OTs produced, this reduce massively the computation overhead induced by the computation of
exponentiations. The communication costs remains linear in the number of OT produce, and the
overhead is only slightly changed.

Looking at the concrete efficiency again, the gain is enormous: looking back at the example of
the edit function, the use of hash function entails a reduction of the computation cost from 1000
hours to about 1 minute (see [Cou23, Section 2.5.3.2]). The communication is also slightly reduced,
but the gain is very small in comparison to the gain in efficiency: the communication cost is still
in the hundreds of gigabytes, remaining highly impractical. This result, if it solved one of the two
problems, is not enough.

Pseudorandom Correlations Generator were introduced in 2018 by [BCGI18] as a way to answer
to this problem and to get the best of two worlds: efficient computation, with small communication
overhead. Their construction is the central subject of this thesis. Chapter 3 will formally introduce
the concept and the properties, Chapter 5 offers involved constructions of pseudorandom correlation
generators in the special case of the OLE correlation.

2.5.5 Others important techniques in MPC

MPC, since its early start in the 80s, has grown to become a very prolific field, with plenty of
techniques and constructions. In this manuscript, we will focus only on the constructions based on
the GMW protocol and therefore on secret sharing. Therefore, we will not discuss the following
techniques:

2.5.5.1 Garbled-circuit-based Scheme

Protocols based on garbled circuit schemes descend from the seminal work of Yao [Yao82]. The
idea behind garbled circuits is as follows: one of the players transforms the protocol to be computed
in order to make it garbled for the other player. Next, the other player evaluates the garbled circuit
without having any information about what is going on, as the circuit is garbled for him. This still
requires the parties to exchange a lot of information in comparison to secret-sharing-based-MPC

3. AWS EC2 c5.9xlarge
4. after all, the protocol proposed is quite old, we choose it mostly for its simplicity but better versions exist



36 Technical Background

schemes but requires only a constant number of rounds. Therefore it can be very useful when the
latency is very high and the number of rounds is critical, for example.

2.5.5.2 FHE-based Scheme

FHE stands for fully homomorphic encryptions. It was introduced by Gentry in 2009 [Gen09],
and is a form of encryption that allows computation to be performed on encrypted data. This is
very powerful because the parties just have to send an encrypted version of their secret values to
the other party, and perform locally the computation on the encrypted - and therefore unreadable -
secret values. This achieves low communication as you only have to send and receive the encryption
of your inputs and the result, and a low number of rounds for the same reasons. Nonetheless, the
protocol requires advanced and very expensive cryptographic primitives, which results in very large
computational costs.



Chapter 3
Efficient Correlated Randomness
Generation: PCG and PCF

We have shown, in Section 2.5.4, that using a two-party protocol with additional random cor-
relation, the parties can securely compute any function f , represented as an arithmetic circuit.
Unfortunately, the amount of random correlations which must be provided to the parties beforehand
is as big as the number of multiplication gates in an arithmetic circuit representing f , or equivalently,
the number of AND gates in a boolean circuit representing f . Because the number of multiplication
gates in such an arithmetic circuit for the functions we consider is easily around ≈ 109, the costs of
generating all this amount of random correlation are prohibitively high regarding both computation
and communication. A solution was provided by the OT extension technique, which greatly reduced
the computational costs: players could then obtain the result with only three evaluations of hash
function per OLE produced. Nonetheless, the communication complexity remains prohibitive, being
in hundreds of gigabytes. Therefore, new solutions have to be designed to tackle the communication
problem. The chapter presents the solutions, Pseudorandom Correlation Generator and Pseudoran-
dom Correlation Function. These constructions mainly come from [BCGI18; BCGI+19b; BCGI+20b;
BCGI+20a].
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For a general understanding of this chapter, we recommend that the reader review Section 2.5.3
and Section 2.5.4, which serve as motivation.

3.1 Pseudorandom Correlation Generator

3.1.1 Introduction and General Idea

3.1.1.1 The Preprocessing Model

In light of the GMW protocols using Beaver triples, we introduce the preprocessing model for
computing secure functions. This model consists of two phases:

— The first phase is the preprocessing phase, during which the parties create the correlated
randomness they will need via multiple calls to OT protocols. This phase does not depend on
the function the parties wish to compute, nor on the inputs, and therefore can be conducted
ahead of time (hence its name). This phase could be slow.

— The second phase is the online phase, during which the parties use the correlated randomness
material created during the preprocessing phase, in the GMW protocols. Here, we expect the
phase to be fast and non-cryptographic.

The goal of this construction is to reduce the cost of the online phase as much as possible, both in
communication and in computation, pushing the majority of the costs into the preprocessing phase.
Again, the interest lies in the fact it can be computed ahead of time.

3.1.1.2 About the Importance of Pseudorandomness

When dealing with primitives that are difficult to generate randomly, a valuable technique in the
cryptographer’s toolbox is to use pseudorandomness. By relaxing the requirement for real randomness,
one can be inspired by some classical constructions in cryptography: the Pseudorandom Generator
(PRG). We explained in Definition 2.3.3 that a PRG is a powerful primitive that allows a party to
generate, from a small amount of real randomness, long strings that appear random. This becomes
crucial when pure randomness is hard to obtain. Additionally, get a closer look at the protocol
described in Example 2.3.1. The protocol is in the preprocessing model:

— Execute a short protocol to obtain a shared short key k (correlation identity).
— Without further communication, apply the PRGG to the key k to generate a long pseudorandom

chain.
— Use this pseudorandom chain G(k) to securely send a message.
This is secure as long as the PRG used is secure. Note that in the end the parties hold the same

chain G(k). We can rephrase this fact saying that they manage to obtain a large amount of the
identity correlation. Next, we aim to extend this construction to handle general correlations, not just
the identity correlation.

3.1.1.3 From PRG to PCG

The core idea behind pseudorandom correlation generator is exactly the one of a PRG: we want
to go from small random correlated seeds to long pseudorandom correlated strings. The requirement for
the two strings to remain correlated makes the question hard (otherwise, the parties could just apply
a PRG to their seed and obtain a long pseudorandom string, but this would erase the correlation).
Contrary to our previous example with the identity correlation, we distinguish the correlation that
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exists between the seeds that we give the parties and the correlation that exists between the long
pseudorandom correlated strings. The later is the one we will use afterwards in our MPC protocols,
and therefore is called the target correlation. More precisely, we search a method to transform λ
instances of a correlation C, into exp(λ) instances of the target correlation Ctarget.

Example 3.1.1. We consider the OLE correlation as target correlation. We want Alice and Bob
to hold respectively s0 and s1, of size poly(λ), such that a correlation exists between s0 and s1,
associated to a protocol for them to expand locally s0 and s1, that is, being an analog of the evaluation
by the PRG. It would result in (u′i, v

′
i)1⩽i⩽n for Alice and (∆′i, w

′
i = ∆′iu

′
i + v′i)1⩽i⩽n for Bob, with

λ≪ n. Note that the u′i, v′i,∆′i are now considered pseudorandom.

Therefore, we want the PCG associated to a target correlation to be a pair of two algorithms
(PCG.Gen, PCG.Expand), such that (informally):

— PCG.Gen generates shorts and correlated seeds (k0, k1) for the correlation of your choice.
— PCG.Expand takes a short seed kσ as input and outputs xσ = PCG.Expand(kσ) this a long

pseudorandom string, such that x0 and x1 are correlated according to the target correlation

3.1.1.4 How to read this chapter

Next in this chapter, we will formally introduce the PCG primitive as well as PCF. Some necessary
high-level concepts and examples for the rests of the thesis are presented in Sections 3.1.3 and 3.2.1.
The formal definitions of PCG and PCF are given in Definitions 3.1.3 and 3.2.2 for completeness, but
they are not necessary for general understanding.

3.1.2 Pseudorandom Correlation Generators

We recall the notion of pseudorandom correlation generator (PCG) from [BCGI+19b]. At a high
level, a PCG for some target ideal correlation takes as input a pair of short, correlated seeds and
outputs long correlated pseudorandom strings. The expansion procedure is deterministic and can
be applied locally. The definitions below are taken almost verbatim from [BCGI+20b]. Recall the
definition of corretaion introduced in Section 2.5.4.1

Definition 3.1.1 (Correlated Randomness and correlation generator). Consider a 2PC protocol with
only two parties, Alice and Bob. Let A, B be sets. Given a binary relation R(a, b) : A×B → {0, 1},
we define the correlation with respect to R as the following set

CR = {(a, b) ∈ A×B | R(a, b) = 1}.
Given a binary relation R, we say we give Alice and Bob additional random correlations when we give
to Alice a and to Bob b such that

(a, b)
$← CR.

A PPT algorithm C is called a correlation generator for a correlation C, if C on input 1λ outputs a pair
of elements a, b in C.

The security definition of PCGs requires the target correlation to satisfy a technical requirement,
which roughly says that it is possible to efficiently sample from the conditional distribution of R0

given R1 = r1 and vice versa. It is easy to see that this is true for the correlations considered in this
paper.
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Definition 3.1.2 (Reverse-sampleable correlation generator). Let C be a correlation generator. We say
C is reverse sampleable if there exists a PPT algorithm RSample such that for σ ∈ {0, 1} the correlation
obtained via:

{(R′0, R′1) | (R0, R1)
$← C(1λ), R′σ := Rσ, R

′
1−σ

$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

Example 3.1.2. For completeness, we give a proof of why OLE is reverse-sampleable. OLE gives the
two parties, a sender and a receiver, respectivelyR0 = (u, v) ∈ Fq andR1 = (∆, w = u·∆+v) ∈ Fq .
We show that both in the case of the sender (σ = 0) or of the receiver (σ = 1), there exists a PPT
algorithm RSample(σ,Rσ) that outputs the other part of the correlation R1−σ such that (R0, R1)
looks like a random correlation. Consider the case σ = 0 (sender). In that case, RSample(0, R0) first
parses R0 as (u, v), samples ∆ ∈ Fq , lets w = u · ∆ + v and outputs (∆, w). In the case σ = 1,
RSample(1, R1) first parses R1 as (∆, w), samples u ∈ Fq , lets v = w − u ·∆ and outputs (u, v).

Definition 3.1.3 (Pseudorandom Correlation Generator). Let C be a reverse-sampleable correlation
generator. A pseudorandom correlation generator (PCG ) for C is a pair of algorithms (PCG.Gen,
PCG.Expand) with the following syntax:

— PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs a pair of seeds
(k0, k1);

— PCG.Expand(σ, kσ) is a polynomial-time algorithm that given a party index σ ∈ {0, 1} and a
seed kσ , outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

— Correctness. The correlation obtained via:

{(R0, R1) | (k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ) (a random correlation of the same size).

— Security. For any σ ∈ {0, 1}, the following two distributions are computationally indistinguish-
able:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ), R1−σ ← PCG.Expand(1− σ, k1−σ),

Rσ
$← RSample(1− σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C (see Definition 3.1.2).

Note that PCG.Gen could simply output a sample from C. To avoid this trivial construction, we
also require that the seed size is significantly shorter than the output size.

The correctness of the construction is expected: it consists just to be sure that the distribution
the correlation induced by the PCG is indistinguishable from the target correlation. As for security,
things are a bit more involved: we want that party 1− σ does not get more information on Rσ that
he could deduce from its own seed and R1−σ .

Remark 3.1.1 (On reverse-sampleable correlation generator). The notion of reverse-sampleable
correlation may seem a bit far-fetched and we might hope for a simpler notion of security. Let Π be a



3.1 Pseudorandom Correlation Generator 41

protocol in the correlated randomness model, we define Π′ the protocol which replaces the random
correlation in Π with the expanded seeds the parties got from the PCG. A simpler notion of security
would be “Π secure in the preprocessing model” imply that “Π′ is secure”. Unfortunately, this is not
sufficient, and there exists secure protocols in the correlated randomness model, that are not secure
when the true correlated randomness is replaced by expanded seeds (see [BCGI+19b]).

The authors of [BCGI18; BCGI+19b] introduced a new model called the corruptible correlated
randomness model. This model is a relaxation of the previous one, as it allows the adversary to decide
its part of the correlation, while the additional inputs provided to the honest parties are sampled
randomly based on their choices. In this context, the concept of reverse-sampleable correlation
becomes more intuitive: we require that no additional information can be inferred from the seed
provided by the PCG beyond what it inherently conveys. There are two primary reasons for adopting
this model:

— It is easier to achieve.
— The authors demonstrate that if a protocol Π is secure in the corruptible correlated randomness

model, it can be substituted with a protocol Π′ where the correlated pseudorandomness is
generated through the expansion of short seeds provided by the PCG, while still maintaining
security.

3.1.3 Silent Preprocessing Model

All these constructions motivate the idea of the silent preprocessing model. This model can be
summarized is three different parts described below:

1. The first phase involves the parties generating the short correlated seeds. This should not be
too costly both in computation and communication complexity because it concerns only small
seeds.

2. The second phase is the phase of silent expansion, or silent computation, meaning that the
players can expand their correlated seeds locally, without communication.

3. Finally, the players use the thus created correlated randomness in a GMW-like protocol, with
no cryptography involved.

Figure 3.1 provides the template for this model.

Remark 3.1.2 (Preprocessing phase: another advantage). It is important to understand that the first
step is a preprocessing step, and as such, it can be done beforehand, even before knowing the value
of x, or the function f . While this was already the case when designing protocols using additional
random correlation given by the parties, this construction using PCG offers us an additional property:
parties don’t have to evaluate the seeds immediately when they receive them. Therefore, the seeds
act as a compressed version of the pseudorandom randomness they will use in the future, and the
parties don’t have to store billions of elements directly, which would be impractical.

3.1.3.1 On the Importance of Function Secret Sharing and a Taste of PCG Con-
struction

In this section we give a taste of how PCGs are constructed. More information about the
construction of PCG can be found in Chapter 5, where it will be deeply studied in the case of the
OLE correlation.
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f(x0, x1)
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Figure 3.1 – Representation of the silent preprocessing model with: (1) the setup protocol, (2) the
silent expansion, (3) use a fast online protocol using correlated pseudorandomness.

PCGs are built on the very important Function Secret Sharing (FSS) primitive (see Section 2.5.3.5),
and more especially DPF (Definition 2.5.9). The DPF functionality is a very powerful primitive
that allows us to share point functions, and more generally multi-point functions for SPFSS (sum of
point-function). But obtaining a sharing of a multi-point function is the same as obtaining a sharing
of a long but sparse vector: consider the vector of the evaluation of the function. Therefore FSS

enables the parties to share long but sparse vectors, from small seeds. That is Alice holds s0 ∈ Fn
q

and Bob holds s1 ∈ Fn
q both pseudorandom vectors vectors, such that e = s0 + s1 is a t-sparse

vector in S(Fn
q , t) (see Definition 2.4.5).

Consider a public parity-check matrix H ∈ F(n−k)×n
q , and two sparse elements e0, e1 ∈ S(Fn

q , t).
The Syndrome Decoding assumption guarantees that both x0 = He0 and x1 = He1 are pseudoran-
dom. x0 and x1 have therefore a hidden sparse structure. Let e : Fn−k

q × Fn−k
q → G be a bilinear

map, with G a group. Consider the correlation of the form

Ce = {((x0, s0)(x1, s1)) | x0,x1
$← Fn−k

q , s0
$← G, s1 = e(x0,x1)− s0}.

Note for example that OLE is a correlation that satisfy this form, with G = Fq , and the bilinear map
being e(x0,x1) = ⟨x0,x1⟩.
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Let us focus on the [[e(x0,x1)]]. Because e is a bilinear function, it exists a function L such that

e(x0,x1) = L(x0 · x1
⊺),

where L is linear in all the entries of the matrix x0 · x1
⊺. Further, we obtain that

[[e(x0,x1)]] = [[L(x0 · x1
⊺)]] = L([[x0 · x1

⊺]]),

where the last equality stand because additive sharing commute with linear map.

L([[x0 · x1
⊺]]) = L([[He0e1

⊺H⊺
1]]).

Using again the linearity of additive sharing:

[[e(x0,x1)]] = L(H[[e0e1
⊺]]H⊺

1).

And this can be rewritten as:

[[e(x0,x1)]] = L∗([[e0e1
⊺]]),

for L∗ the linear function that multiply by H0 and H1 respectively on the left and right, and then
apply L. What we have shown is that constructing the correlation boils down to obtaining an additive
sharing of e0e1⊺. Remember that e0, e1 are t-sparse vectors. Therefore, e0e1⊺ defines a matrix
with at most t2 non-zero position, that we can share using FSS. Section 5.2 will tackle this general
technique in the case of the OLE correlation, underlying its limitations in the case of an unstructured
matrix.

3.2 Pseudorandom Correlation Function
Taking a step back, while the construction using PCG is appealing, one downside emerges: Alice

and Bob must generate all of the correlated pseudorandomness all at once. They cannot just create a
tailored amount of the correlated pseudorandomness for one small computation, and then create
more another day, etc. This can be not convenient, in addition to the fact that when the full vector of
correlated randomness has been consumed, Alice and Bob have to perform a PCG.Gen protocol again.
Like PRF is a natural generalization of PRG, we naturally introduce the notion of Pseudorandom
Correlation Function (PCF ): it allows for generating correlation pseudorandomness incrementally.

Informally, the goal of a pseudorandom correlation function is similar to that of a PCG: after a
short interaction for setup, the parties can generate correlation on the fly. Specifically, we want a
PCF to be a pair (PCF.Gen,PCF.Eval) of algorithms such that:

— PCG.Gen outputs a pairs of key k0, k1;
— PCG.Eval(kσ, x) is a deterministic polynomial-time algorithm;
— The joint distribution of outputs of PCG.Eval is indistinguishable from the outputs of a random

instance realizing the correlation;
— The correlated key kσ does not help to distinguish PCG.Eval(k1−σ, x) from a random instance

of the correlation more than what is implied b PCG.Eval(kσ, x).
We formally define below PCF, in a similar way as we did for PCG. The definitions are taken almost
verbatim from [BCGI+20a]. Again the formal definition are very verbose, and it just essentially
captures the point written listed above. Reverse-sampleable correlation generator has to be used
again, but the definition is a bit different because adapted to the specificities of PCF.
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Definition 3.2.1 (Reverse-sampleable correlation, modified). Let 1 ⩽ ℓ0(λ), ℓ1(λ) ⩽ poly(λ) be
two functions. ℓ0, ℓ1 denote the length of the output correlation. Let Y be a probabilistic algorithm
that on input 1λ returns a pair of outputs (y0, y1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ), defining a correlation
on the outputs. We say that Y defines a reverse-sampleable correlation, if there exists a probabilistic
polynomial time algorithm RSample that takes as input 1λ, σ ∈ {0, 1} and yσ ∈ {0, 1}ℓσ(λ), and
outputs y1−σ ∈ {0, 1}ℓ1−σ(λ), such that for all σ ∈ {0, 1} the following distributions are statistically
close:

{(y0, y1) | (y0, y1) $← Y(1λ)} and

{(y0, y1) | (y′0, y′1)
$← Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)}.

This notion of reverse-sampleable correlation is the same as before, except for the fact that the
size of the output correlation can depend on the security parameter λ.

Definition 3.2.2 (Pseudorandom correlation function (PCF)). Let Y be a reverse-sampleable corre-
lation with output length ℓ0(λ), ℓ1(λ) and let λ ⩽ n(λ) ⩽ poly(λ) be an input length function. Let
(PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

— PCF.Gen(1λ) is a probabilistic polynomial time algorithm that on input 1λ, outputs a pair of
keys (k0, k1); we assume that λ can be inferred from the keys.

— PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input σ ∈ {0, 1}, key
kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈ {0, 1}ℓσ(λ) 1.

ExpprA,N,0(λ) :
1: foreach i = 1 to N(λ).

1.1: x(i) $← {0, 1}n(λ)

1.2: (y
(i)
0 , y

(i)
1 )← Y(1λ)

2: b← A(1λ, (x(i), y(i)0 , y
(i)
1 )i∈[N(λ)])

3: return b

ExpprA,N,1(λ) :
1: (k0, k1)← PCF.Gen(1λ)

2: foreach i = 1 to N(λ).
2.1: x(i) $← {0, 1}n(λ)

2.2: foreach σ ∈ {0, 1}:

2.2.1: y(i)σ ← PCF.Eval(σ, kσ, x
(i))

3: b← A(1λ, (x(i), y(i)0 , y
(i)
1 )i∈[N(λ)])

4: return b

Figure 3.2 – Pseudorandom Y-correlated outputs of a PCF.

1. Note that it would be sufficient for PCF.Eval to take as input kσ and x by appending σ to the key kσ . This
corresponds to the view of a PCF as a single keyed function.



3.2 Pseudorandom Correlation Function 45

ExpsecA,N,σ,0(λ) :
1: (k0, k1)← PCF.Gen(1λ)

2: foreach i = 1 to N(λ).
1.1: x(i) $← {0, 1}n(λ)

1.2: y(i)1−σ ← PCF.Eval(1− σ, k1−σ, x(i))

3: b← A(1λ, σ, kσ, (x(i), y(i)1−σ)i∈[N(λ)])

4: return b

ExpsecA,N,σ,1(λ) :
1: (k0, k1)← PCF.Gen(1λ)

2: foreach i = 1 to N(λ).
2.1: x(i) $← {0, 1}n(λ)

2.2: y(i)σ ← PCF.Eval(σ, kσ, x
(i))

2.3: y(i)1−σ ← RSample(1λ, σ, y
(i)
σ )

3: b← A(1λ, σ, kσ, (x(i), y(i)1−σ)i∈[N(λ)])

4: return b

Figure 3.3 – Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as in Definition
3.2.1.

We say (PCF.Gen,PCF.Eval) is a (weak) (N,B, ε)-secure pseudorandom correlation function
(PCF) for Y , if the following conditions hold:

— Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-uniform adversary A of
size B(λ), it holds∣∣∣Pr [ ExpprA,N,0(λ) = 1

]
− Pr

[
ExpprA,N,1(λ) = 1

]∣∣∣ ⩽ ε(λ)

for all sufficiently large λ, where ExpprA,N,b(λ) for b ∈ {0, 1} is as defined in Figure 3.2. In
particular, the adversary is given access to N(λ) samples.

— Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ), it holds∣∣Pr [ ExpsecA,N,σ,0(λ) = 1
]
− Pr

[
ExpsecA,N,σ,1(λ) = 1

]∣∣ ⩽ ε(λ)

for all sufficiently large λ, where ExpsecA,N,σ,b(λ) for b ∈ {0, 1} is as defined in Figure 3.3 (again,
with N(λ) samples).

We say that (PCF.Gen,PCF.Eval) is a PCF for Y if it is a (p, 1/p, p)-secure PCF for Y for every
polynomial p. If B = N , we will write (B, ε)-secure PCF for short.

Note that PCF are defined above like weak pseudorandom function, where security is only
required to hold given random adversarial queries. As for PRFs, one can also strengthen the definition
to strong PCFs, which allow arbitrary adversarial queries; a formal definition is given in [BCGI+20a].
As shown in [BCGI+20a], any weak PCF can be turned into a strong PCF in the random oracle model,
by hashing the input before feeding it to the function.

3.2.1 How to Construct a PCF?

In this section, we explain how the association of FSS and a WPRF can be used to create a PCF.
The construction exposed here follows the work of [BCGI+20a, Section 5, 6].

3.2.1.1 Function Secret Sharing for Weak Pseudorandom Function.

The construction will make use of FSS for Weak Pseudorandom Function.
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Definition 3.2.3 (FSS with Weak Pseudorandom Outputs). We say that an FSS scheme (FSS.Gen,
FSS.Eval) for f has weak pseudorandom outputs if for any σ ∈ {0, 1}, N = poly(λ), the distribution

{
(x(i), y(i))Ni=1 | (K0,K1)

$← FSS.Gen(1λ,fλ), x(i)
$← {0, 1}n, y(i) $← FSS.Eval(σ,Kσ, x

(i))
}
λ∈N

is indistinguishable from the uniform distribution on ({0, 1}n ×G)N .

We will say that such a WPRF is then FSS-friendly if there exists an FSS scheme for the class
{fk(·)}. The state-of-the-art on FSS is reduce: it tackles the class of multi-point functions, and also
step functions. Because the state-of-the-art on FSS provides FSS schemes for multi-point functions,
the choice of FSS-friendly WPRF is quite reduced. We will discuss the difficulty of finding such a
WPRF and give a construction in Section 7.2.

3.2.2 A Construction Example for the VOLE Correlation

[BCGI+20a] provides different construction - all in the same flavor - constructing PCF with
different correlations (OT, VOLE, Beaver Triples, see Figures 2.3, 2.5 and 2.7). In this manuscript, we
will present only the construction tackling the VOLE correlations (see Definition 2.5.6). We recall
that the VOLE correlation is a vector version of the OLE correlation: it gives (u,v) to the sender
and (∆,w = ∆u+ v) to the receiver. In the context of a PCF, it can be seen as an OLE correlation
with fixed ∆: the sender receives for each evaluation of the PCF (u, v) and the receiver receives
(∆, w = ∆u+ v), for new u, v, w each time but the same ∆.

Theorem 3.2.1 ([BCGI+20a, Theorem 5.3]). Let R = R(λ) be a finite commutative ring. Suppose
there exists an FSS scheme for scalar multiples of a family of weak pseudorandom functions F :=
{fk : {0, 1}n → R}k∈{0,1}λ . Then, there exists a PCF for the VOLE correlation overR, given by the
construction in Figure 3.4.

Proof. We will only sketch the proof and invite the interested reader to read the proof in the original
paper.

First, check that the protocol is correct: the sender obtains (u, v) and the receiver obtains (∆, w)
on input ∆, as required. Therefore, this is indeed an OLE correlation with fixed ∆. As for the security
requirements, we can use a sequence of hybrid distributions. The security requirements ask to
prove that the result of ExpsecA,N,σ,0(λ) and ExpsecA,N,σ,1(λ) (defined in Figure 3.2) are computationally
indistinguishable. There are two cases, σ = 0 and σ = 1.

When σ = 0, this is asking to prove that (k0, (x(i), (∆i, w(i)))) for ∆i, wi issued by the PCF, is
indistinguishable from (k0, (x

(i), (∆′i, w′(i)))), where ∆′ and w′ are reverse-sampled using (ui, vi).
Briefly, this can be done by replacing the keyK0 generated by the FSS scheme by a fresh key K̃0(using
the security of FSS), and then by replacing all the u by new random elements (using this time the
security of the WPRF).

For σ = 1, it is even simpler because it follows directly from the security of the FSS scheme.
Additionally, this defines a proper VOLE correlation on the long fly: N distinct calls to the PCF

are indistinguishable from a VOLE correlation with vectors of sizeN . We first replace v withw−∆u,
which is still indistinguishable because of the FSS correctness property. Next, we replace each wi

with a random element ofR, which cannot be distinguished because of the security of the FSS. We
can finally replace u with a random element because of the security of WPRF.
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This is again constructed over FSS: The FSS security ensures the pseudorandomness of the w
and v elements, whereas the WPRF ensures the pseudorandomness of the element u. Note that an
FSS-friendly WPRF is therefore required. This will be the subject of the last chapter of this thesis,
Chapter 7.

PCF for Vector Oblivious Linear Evaluation

Parameters:
F = {fk : {0, 1}n → R}k∈{0,1}λ be a weak PRF, FSS = (FSS.Gen, FSS.Eval) a Function Secret
Sharing scheme for {cfk}c∈R,k∈{0,1}λ , with weak pseudorandom outputs.

PCF.Gen(1λ):
1: Sample k $← {0, 1}λ and ∆

$← R.
2: Sample FSS keys (K0,K1)

$← FSS.Gen(1λ,∆fk)

3: Output the keys k0 = (K0,∆) and k1 = (K1, k).

PCG.Eval(σ, kσ, x):
1: if σ = 0,

1.1: Let w = FSS.Eval(0,K0, x)

1.2: Output (∆, w).
2: if σ = 1,

2.1: Let v = −FSS.Eval(1,K1, x)

2.2: Let u = fk(x)

2.3: Output (u, v)

Figure 3.4 – PCF for VOLE over a the ringR based on FSS for scalar multiples
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3.3 Programmable PCGs/PCFs
We now introduce an important property that PCG and PCF can enjoy, and which has some

interesting impact on our constructions. The PCG protocols for OLE presented in Chapter 5 will
verify this property, and it is one of the reasons for their study.

At a high level, a programmable PCG allows the generation of multiple PCG keys such that part
of the correlation generated remains the same across different instances. Consider the following
example: imagine Alice, Bob, and Charlie want to perform computations together, equipped with
a programmable PCG for OLE between two parties. Alice can decide to execute the PCG protocol
with Bob and produce numerous pairs (u, [[∆ · u]]) and (∆, [[∆ · u]]), respectively for Alice and Bob.
Alice can then execute the PCG protocol a second time, but with Charlie this time, and produce
numerous pairs (u, [[Γ · u]]) and (Γ, [[Γ · u]]). Note that the value u is deliberately the same in both
PCG calls: Alice can program parts of the output of the correlation to be u. Here, the terminology
can be misleading, but the meaning is that Alice can fix part of her output to be equal to the result
she obtained with Bob.

Programmable PCGs are necessary to construct n-party correlated pseudorandomness from
the 2-party correlated pseudorandomness generated via the PCG. Informally, this is because when
expanding n-party shares (e.g. of Beaver triples) into a sum of 2-party shares, the sum will involve
many “cross terms”; using programmable PCGs allows maintaining consistent pseudorandom values
across these cross terms. This will be the object of Section 3.3.1.

The formal definition of a programmable PCG is given in Appendix A.

Remark 3.3.1 (On random correlations and programmability). Programmable PCG on random
correlations may seem a little paradoxical. Indeed, if we assumed at the beginning that the parties
were given random instances of the target correlation, they can now fix some of the inputs they will
receive. For example, in the case OLE (giving some (u, [[∆ · u]]0) to Alice and (∆, [[∆ · u]]1) to Bob),
a programmable PCG can be used to fix the values u and ∆. Note that when a party decides to fix
the value of some parts of its correlation, it looks like we are just creating a PCG for a variant of
the original correlation, where some inputs are fixed. Nevertheless, it is a bit different because the
value that is fixed has to have a small description and therefore cannot be simply sampled randomly
beforehand.

3.3.1 Application 1: (N-party) Multiplication Triples Generation for
Arithmetic Circuit

Theorem 3.3.1. Assume the existence of a programmable PCG P for OLE between two parties. Let
denote its running time to produce T OLEs instances by P(T ). Then there exists a semi-honestN -party
protocol for securely evaluating an arithmetic circuit C over Fq with T multiplication gates, in the
preprocessing models, such that:

— During the preprocessing phase, the cost is N(N − 1)P(T ).
— In the online phase, which is non-cryptographic, the cost of communication is 2 ·N · T elements

of Fq .

Proof. Consider the parties P1, . . . , PN . Remember that using two random OLEs, one can construct
a Beaver triple (see Lemma 2.5.3). We use programmability to obtain N -party multiplication triples
via the following steps:

1. Each party Pi gets two random values (xi, yi). We define X =
∑

i xi and Y =
∑

j yj .
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2. Each pair of parties (Pi, Pj)1⩽i,j⩽N,i̸=j performs the programmable protocol for (2-party) OLE
with programmable inputs (xi, yj), and obtains shares of xi · yj . We denote the share of Pi as
[[xi · yj ]]i.

3. Let Ki =
∑N

j=1[[xi · yj ]]i + [[xj · yi]]i + xi · yi. The Ki are shares of the product:

X · Y =
∑

1⩽i,j⩽N

xi · yj =
N∑
i=1

Ki.

Note that the importance of programmability arise here at step 2: we want to obtain the additive
sharing of all the possible pairs (xiyj), with 1 ⩽ i, j ⩽ N . Therefore, the party i wants to fix its
value xi in each of the PCG protocols he executes to compute the additive sharing of xiyj for all
the yj , j ̸= i. The parties use the programmable PCG P to generate short seeds for each of the
N · (N − 1) (2-party) OLE they need. In the online phase, they locally expand the seeds to obtain T
instances of (N -party) multiplication triples. The parties can execute the (N -party) GMW protocol
using the multiplication triples and evaluate the circuit.

The cost of communication in the online phase is derived from the GMW algorithm using the
multiplication triples. For each multiplication gate, each party must send two field elements, resulting
in a cost of 2 ·N · T .

3.3.2 Application 2: Secure Computation with Circuit-Dependent
Preprocessing

We discuss now another important application of programmable PCG: circuit-dependent prepro-
cessing is a variation of the standard Beaver’s circuit randomization technique with multiplication
triples. It has been investigated in recent works, such as [DNNR17; Cou19]. The idea is to preprocess
multiplications in a way that depends on the structure of the circuit and leads to an online phase that
requires just one opening per multiplication gate, instead of two when using multiplication triples.
PCGs for OLEs do not directly enable reducing the preprocessing phase of secure computation with
circuit-dependent correlated randomness: at a high level, this stems from the fact that since the
correlated randomness depends on the topology of the circuit, it cannot be compressed beyond the
description size of this topology. Nevertheless, PCGs enable batch secure computation (i.e. securely
computing many copies of the same circuit on different input) with silent preprocessing in the
circuit-dependent correlated randomness setting, by using PCGs to compress a batch of correlations
for a given gate across all circuits.

Theorem 3.3.2. Assume the existence of oblivious transfer and a programmable PCG P for OLE
between two parties. Let us denote its running time to produce T OLEs instance by P(T ). There exists a
semi-honest 2-party protocol for securely evaluating T copies of an arithmetic circuit C over F with S
multiplication gates, in the preprocessing model, such that:

— During the preprocessing phase, the computational cost is 2SP(T ).
— The online phase is non-cryptographic and has communication cost of 2 · S · T elements of F.

Proof. Let C be an arithmetic circuit over F consisting of fan-in two addition and multiplication
gates. Each wire w is assigned a mask rw during the offline phase. The masks are designed as follows:

— If w is an input wire, rw is chosen at random;
— If w is the output wire of a multiplication gate, rw ∈ F is chosen at random;
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zx y

× +

×

x+ rx y + ry y + ry z + rz

y + z + ry + rzx× y + rv

Figure 3.5 – Representation of the arithmetic circuit with its label

— If w is the output wire of an addition gate with input wires u and v, then rw := ru + rv ;
— For each multiplication gate, we assign a value su,v , such that on input wires u and v, su,v :=
ru · rv .

The masks are not known by the parties, but they obtain random additive shares of each rw for
any input and output wire of multiplication gates, as well as su,v for the multiplication gates.

When the online phase begins, both parties hide their secret values with random masks. Before
the protocol starts, a party that has an input x sample a random rx, and send x + rx to the other
party, along with a share of rx. The invariant of the online phase is that through the protocol, for
each wire, parties know exactly the value x+ rx, where rx is the mask of this wire (for which parties
have additive sharing), and x is the real value that is computed by the circuit passing through the
wire w. The invariant is preserved through each gate because of the following:

— For an addition gate, parties know x+ rx and y+ ry . Then the parties add locally those values
to obtain x+ y + rx + ry , with rx + ry being indeed the output mask for the addition gate.

— For a multiplication gate with rw denoting its output wire’s mask, parties know x+ rx and
y+ ry . The parties can locally compute their share [[(x+ rx) · ry +(y+ ry) · rx+ rx · ry + rw]]
(the formula can be a little bit different if we are not over F2). By exchanging one bit of
information, they reconstitute this value. Adding up (x+ rx) · (y + ry), they obtain in clear
x · y + rw where rw is the mask of the output wire of this multiplication gate.

In the end, we have to perform 2S different calls to P to create the (2-party) multiplication triples
seeds. In the online phase, we gain a factor 2 in communication because each party only has to send
a bit of information for each of the multiplication gates. Since there are S · T multiplication gates in
total, the communication cost in the online phase is 2 · S · T .



Chapter 4
The linear test framework

The linear test framework was formally introduced in 2020 in [BCGI+20a], but its core idea was
folklore for a long time. This framework analyzes the decision Syndrome Decoding assumption, which
tackles the difficulty of distinguishing (H,y) from (H,He), where y

$← Fn−k
q and e

$← S(Fn
q , t).

The main takeaway is that the majority of attacks on search Syndrome Decoding — for example,
information set decoding or statistical decoding — perform only linear operations on the syndrome,
these operations depending solely on the matrix H. By defining a general framework that abstracts
this notion, we can prove general lower bounds on the time complexity of all attacks falling into that
category. This is therefore an important tool in analyzing the syndrome decoding assumption and
is central to the analysis of our construction. In this chapter, we recall the definition of the linear
test framework, its purpose, and some important results that we use. We analyze the details of the
constructions and provide insights on how to demonstrate that an attack fits into the framework.
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4.1 Introduction
We showed in Chapter 3 how PCFs and PCGs can be built using the syndrome decoding assump-

tion (defined in Definition 2.4.7). Syndrome decoding is a very common hardness assumption in
cryptography. It was introduced by McEliece in 1978 [McE78] and proved NP-complete by [BMT78].
Nowadays, many frameworks use codes and the syndrome decoding assumption for efficient proto-
cols, and several of the accepted schemes in the fourth round of NIST’s call for quantum-resistant
primitives rely on it ([AABB+22b; AABB+22a; ABCC+22]). Syndrome decoding is also equiva-
lent to the Learning Parity with Noise (LPN) assumption when the number of samples is fixed (see
Remark 2.4.4), which is another widely used assumption in cryptography, notably introduced by
[BFKL94]. A variant of SD was also studied in the context of learning theory and random constraint
satisfaction problems [FGKP09; Fei02].

Syndrome Decoding is therefore part of the landscape of computer science and especially cryp-
tography for a long time. Needless to say, the assumption as been gone over with a fine-tooth comb,
and many attacks have been created since the sixties. Among those attacks, we can identify:

— BKW-style of attacks [BKW00; Lyu05; LF06; EKM17].
— Covering-codes attacks [ZJW16; BV16; BTV15; GJL20].
— Information set decoding attacks [Pra62; Ste89; FS09; BLP11; MMT11; BJMM12; MO15a;

EKM17; BM18].
— Statistical decoding attacks [Al 01; FKI07; Ove06a; DT17a; CDMT22b].
— Birthday-based attacks [Wag02; Kir11].
— Linearization attacks [BM97; Saa07; AG11].
— Attacks based on finding correlations with low-degree polynomials [ABGK+14; BR17].

There exist other attacks that are not listed, but this offers already a good overview of the landscape.
Considering the above, proving that a given variant of syndrome decoding is secure may appear

daunting, as one must consider various attack techniques. Fortunately, there is a trick: all the attacks
presented above share a common feature. Indeed, these attacks consist of different types of linear
operations on the syndrome, with these linear operations depending only on the public matrix H.
Therefore, we can encompass all the attacks above into one common framework, denoted as the
linear test framework. This concept was more or less folklore for a long time before it was first
remarked by [ADIN+17] and formally stated in [BCGI+20a]. Since its introduction, this formalism
has gained interest and has been utilized in numerous works [CRR21; BCGI+22; CD23; BCCD23;
RRT23]. This chapter formally presents the linear test framework, explains how resistance against
linear tests can be linked to a minimal distance property, and provides precise examples of why
specific attacks fit into the model. The chapter will partially follow Section 3 of [CRR21].

4.2 Formal definition
Recall the definition of bias introduced in Definition 2.2.1:

Definition 4.2.1 (Bias of a Distribution). Given a distribution D over Fn and a vector v ∈ Fn, the
bias of D with respect to v, denoted biasv(D), is equal to

biasv(D) = |Px∼D[v
⊺ · x = 0]− Px∼Un [v

⊺ · x = 0]| =
∣∣∣∣Px∼D[v

⊺ · x = 0]− 1

|F|

∣∣∣∣ ,
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where Un denotes the uniform distribution over Fn. The bias ofD, denoted bias(D), is the maximum
bias of D with respect to any nonzero vector v.

We introduce formally the intuition that we gave during the introduction.

Definition 4.2.2 (Linear Tests Framework). Let F represent an arbitrary finite field, and let D =
{Dm,n}m,n∈N denote a family of noise distributions over Fn. Let C be a probabilistic code generation
algorithm such that C(m,n) outputs a matrixH ∈ Fm×n. The Linear Tests Framework consists in the
following game (represented in Figure 4.1):

— Sample H $← C(n,m).

— SendH to the adversary A.
— Let the adversary an unbounded time to compute an attack vector v ∈ Fm.

Let λ denote a security parameter. Let ε, δ : N → [0, 1] be two functions. A (D,C,F)- SD(m,n)
assumption with dimensionm = m(λ) and n = n(λ) samples is said to be (ε, δ)-secure in the linear
tests framework if for any adversary A with unlimited time which, on input a matrix H ∈ Fm×n,
outputs a nonzero attack vector v ∈ Fm, it holds that

Pr
H

$← C(m,n), v ← A(H)

[ biasv(DH) ⩾ ε(λ) ] ⩽ δ(λ), (4.1)

where DH is the distribution induced by sampling e $← Dm,n, and outputting the SD sampleHe.

This means that for any adversary A that outputs any attack vector v, the probability that the
distribution {He | e← Dm,n} is biased, with respect to the vector v, above ε(λ) is lower than δ(λ).
Let us properly analyze the implications of Equation (4.1). This bound acts as an upper limit on the
advantage that an adversary running in polynomial time can have in distinguishing He from random.
To bound the advantage of the adversary, consider the following: with probability 1− δ(λ) ≈ 1, we
obtain a bias of at most ε(λ), resulting in an advantage of at most ε(λ). In the remaining case, which
occurs with probability δ(λ), we only know that the bias is not bounded by ε(λ). Here, we can upper
bound the advantage by δ(λ). Therefore, the upper bound on the advantage of an adversary whose
attack falls into the linear tests framework is δ(λ) + ε(λ). We will subsequently choose ε and δ to be
exponentially small in the security parameter λ.

Remark 4.2.1 (From a Bias to an Actual Distinguisher). How can we transform the information
on the maximum bias associated with an attack vector v into an actual distinguisher? Suppose the
distinguisher can pick toN attack vectors v1, . . . ,vN , all depending onH. Then, we sample the error
vector e. The adversary learns the value associated with each attack vector, v1

⊺ ·He, . . . ,vN
⊺ ·He.

The adversary can distinguish by looking at the number of zeros in this list. Each of the vi
⊺ ·He can

provide distinguishing power of at most ε. Therefore, to obtain a noticeable effect, a simple union
bound indicates that at least N = poly(λ)/ε samples are needed, where λ is a security parameter.
Because the adversary is given the freedom to choose different vi, the results are highly correlated,
and we cannot provide a stronger bound on the number of samples required. We argue, therefore,
that a given distinguisher should take time T = aN , where a is the cost of the multiplication by a
vector vi (in O(m)).

Conjecture 4.2.1. All the attacks on the search version of SD listed in the introduction can be cast on
an attack on decision which fits in the linear test framework. That is, for every attack in the list which
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finds the error vector in time T , we can find an attack vector v such that the associated bias is bounded
by poly(λ)/T . As a consequence, any SD assumption that is provably (ε, δ)-secure against linear tests
would require at least poly(λ)/ε.

We propose in Section 4.4 a precise analysis showing why some attacks fall into the linear tests
framework and how their bias relates to the running time of the attack they represent.

1) Send H to the
adversary.

2) The adversary
returns a test vec-
tor v computed
from H in un-
bounded time.

H

v⊺

Game

Check The adversary wins if the distribution induced by

v⊺ H e

is non-negligibly biased (over a random choice of sparse error vector e).

Figure 4.1 – Representation of the linear test framework.

4.3 Properties of the Linear Test Framework and discus-
sion

We thereafter present an important property of the linear tests framework that we will use later
in our constructions: if the code produced by the rows of H has a good minimum distance, then
we can have resistance in the linear test framework. We start by providing an intuition of why it is
the case. The linear test framework asks to analyze the bias of He with respect to the attack vector
v. Because e is a sparse vector, if v⊺H is also sparse, the result is likely to be significantly biased.
However, v⊺H can be viewed as a codeword in the code generated by the rows of H. Therefore, the
condition that v⊺H is not sparse implies that the code produced by the rows of H must have a high
minimum distance.
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Proposition 4.3.1 (The importance of the minimal distance). Let D = (Dm,n)m,n∈N denote a
family of noise distributions over Fn. Let C be a probabilistic matrix generation algorithm such that
C(n,m)→ H ∈ Fm×n. We denote by dH the minimal distance of the code generated by the rows of
the matrixH. Then, for any integer d, the (D,C,F)- SD(m,n) assumption with dimensionm = m(λ)
and n = n(λ) is (εd, δd)-secure in the linear tests framework with

εd = max
wt(u)⩾d

biasu(Dm,n),

and
δd = Pr

H
$← C(m,n)

[ dH < d ] .

Proof. The proof follows directly from Equation (4.1), utilizing the formula of total probability under
the assumption that dH ⩾ d:

Pr[ biasv > εd ] = Pr[ biasv > εd | dH < d ] Pr[ dH < d ]︸ ︷︷ ︸
<δd

+Pr[ biasv > εd | dH ⩾ d ] Pr[ dH ⩾ d ]︸ ︷︷ ︸
0

If the code produced by the rows of H $← C has a high minimum distance with high probability,
and given a suitable choice of noise distribution, we can achieve an exponentially small bias εd
and an exponentially small probability of deviation from this bias δ. More formally, given a noise
distribution En and an integer d, we focus on the maximum bias of En induced by every codeword,
such that εd(En) = maxwt(u)>d biasu(En). We will show that the bias decreases exponentially with
the parameter d. For example consider the case of Bernoulli noise, with parameters t/n, that we
denote by Bn,t: it assigns independently each entry of the vector a 1 with probability t/n.

Lemma 4.3.1. For any integer d,

εd(Bn,t) ⩽ (1− 2t/n)d+1/1 ⩽ exp(−2(d+ 1)t/n)/2.

Proof. The claim is a direct result of the piling-up lemma (Lemma 2.2.2): indeed, we are interested in
the bias of ⟨c, e⟩, where e

$← Bn,t, which is a xor of wt (c) > d Bernoulli samples of rate t/n.

In the case of the Bernoulli distribution, the bias decreases exponentially with the integer d.

Example 4.3.1 (Resistance of random code, from [CRR21]). It is broadly assumed by the community
that the SD assumption is hard when H ∈ Fm×n

2 is random. We show how we can easily bring
evidence for that claim in the linear attack framework. Consider a uniformly random parity-check
matrix H ∈ Fm×n

2 , sampled via the Bernoulli distribution and associated with Bernoulli rate 1/2.
The minimal distance of the code generated by the rows of H is equal to dH as soon as dH columns
of H∗ are independent, where H∗ is the parity-check matrix of the code induced by the rows of
H. Because H is random, H∗ is also random. The probability that d random vectors over Fm

2 are
linearly independent is at least

d−1∏
i=0

2m − 2i

2m
⩾ (1− 2d−1−m)d ⩾ 1− 22d−m.
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To ensure that there do not exist d dependent random vectors over Fm
2 , we must consider all the(

n
d

)
possibilities. The probability the minimal distance of the code generated by the rows of H is

greater than d is at least 1−
(
n
d

)
· 22d−m ⩾ 1− 2(2+log(n))d−m. Using Lemma 4.3.1, we bound εd by

exp(−2(d+ 1)t/m)/2.
Setting d = O(n/ log(m)) is sufficient to obtain a probability of δd = 1 − 2−O(n), and εd ⩽

e−Ω(t/ log(m)). Therefore, any attack fitting into the linear test framework, with noise rate r, requires
on the order of eΩ(t/ log(m)) iterations.

Remark 4.3.1 (On the value δd). In this manuscript, we consider both ε and δd to be exponentially
small in d. However, this condition is not always necessary for δd. For example, in [BCGI+22; RRT23],
the authors consider a δd that is polynomially small in d. This is because, in the case of PCGs, the
parties can sample the matrix H, and take the bet that the matrix has a good minimal distance. With
probability 1 − δd, this is the case, and we have the guarantee that the bias will never be bigger
than ε. This setup can be interesting for some applications. In contrast, for PCFs, this is not exactly
feasible, as the matrix is virtually generated on-the-fly.

4.4 Attacks inside the linear test framework

In this subsection, we demonstrate how a linear test can be precisely derived from an actual
attack, thereby showing why the aforementioned attacks fit within the framework of linear tests.
We will focus on standard information set decoding (ISD) techniques, which are the ones of interest
for our applications. These techniques are thoroughly analyzed in Appendix B. For each attack
algorithm, we will recall its formal description and exhibit an attack vector representing the linear
operations performed during the attack. Next, we will compute the bias associated with each attack
vector and, using Remark 4.2.1, compare it with the actual running time of the attack. Some of the
computations are considered free within the linear test model: all costs associated with finding the
vector v are discarded. The dominant costs (exponential) remain the same when the attack vector
is exactly the one associated with the attack. In the following we will work over F2 for the sake of
simplicity, but it can be generalized to bigger fields.

4.4.1 The exhaustive search

We start easy with the exhaustive search: it consist to randomly guess the error. The algorithm
is described on Figure 4.2.

Proposition 4.4.1. Algorithm Figure 4.2 expected running time is equal to TExhaustive
(
n
t

)
.

Proof. The probability to pick the right vector is 1

(nt)
. The expected running time is the inverse of

that probability.

We identify a linear attack that captures the essence of the exhaustive search attack. The attack
vector corresponding is produced by Figure 4.3.

Proposition 4.4.2. The bias induced by the vector v produced by the algorithm of Figure 4.3 is ≈ 1
2(nk)

.

Proof. The bias is the distance to 1/2 of Pr [ v⊺ · s = 0 ].
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Input: Matrix H ∈ F(n−k)×n
2 , vector s ∈ Fn

2 , target weight t.
Output: e ∈ Fn−k

2 .
A (H):
1: Sample e′ ∈ Fn

2 of weight t.
2: While s ̸= He′ :

4.1: Sample e′ ∈ Fn
2 of weight t.

3: Return e.

Figure 4.2 – Exhaustive Search Algorithm

Input: Matrix H ∈ F(n−k)×n
2 .

Output: v ∈ Fn−k
2 .

linearExhaustiveSearch(H):
1: Sample e′ ∈ Fn

2 of weight t.
2: Define v as an orthogonal vector to H · e′.
3: Return v.

Figure 4.3 – Exhaustive search linear attack vector

Pr [ v⊺ · s = 0 ] = Pr
[
v⊺He = 0 | e′ ̸= e

]
Pr
[
e′ ̸= e

]
+Pr

[
v⊺He = 0 | e′ = e

]
Pr
[
e′ = e

]
.

Pr [ v⊺ · s = 0 ] = Pr
[
v⊺He = 0 | e′ ̸= e

](
1− 1(

n
t

))+
1(
n
t

) .
Note that H is initially sampled as a random matrix: therefore He is equal to a sum of t random
columns. On the other hand, v is chosen uniformly in the orthogonal complement of He′. Therefore,
the part of H that influences the choice of v depends only on the column of H corresponding to e′.
Note therefore that in the sum of columns equal to He, there is at least one column that was not
taken into account when sampling v. This column is random by assumption and therefore, we can
conclude that

Pr
[
v⊺He = 0 | e′ ̸= e

]
=

1

2
.

Therefore, we obtain that

biasExhaustive(v) =
1(
n
t

) − 1

2

(
1− 1(

n
t

)) = O

(
1

2
(
n
t

)) .
This lead to the expected bias.



58 The linear test framework

4.4.2 Prange Algorithm

We now consider the simplest ISD algorithm: the Prange algorithm, displayed in Figure 4.4.
More information can be found in Appendix B. For a subset I ⊂ [0, n − 1], we denote by Ī the
complementary set [0, n− 1]\I . For a vector x ∈ Fn

q , xI denotes the vector restricted to the entries
indexed by I , that is xI = (xi)i∈I .

Input: Matrix H ∈ F(n−k)×n
2 , Vector s ∈ Fn

2 , target weight t.
Output: e ∈ Fn−k

2 .
A (H):
1: Pick randomly a subset I ⊂ [0, n− 1], |I| = k, until HI is full rank.

2: Perform a Gaussian elimination to compute a non-singular matrix U ∈ F(n−k)×(n−k)
q such

that UHI = In−k. Write UHI = H1.
3: Construct ẽ = Us and check whether wt (ẽ) = t. If it’s not the case, go to step 1.
4: Let e′ such that e′

I
= ẽ and e′I = 0.

5: return e′

Figure 4.4 – Prange Algorithm

Proposition 4.4.3. The expected running time of the Prange algorithm is equal to n(n−k)2
(
n
t

)
/
(
n−k
t

)
.

(see Corollary B.2.1)

We identify an attack vector v that captures the essence of the Prange algorithm attack. The
attack vector corresponding is produced by Figure 4.5.

Input: Matrix H ∈ F(n−k)×n
2 .

Output: v ∈ Fn−k
2 .

linearAttackPrange(H):
1: Pick randomly a subset I ⊂ [0, n− 1], |I| = k, until HI is full rank.

2: Via Gaussian elimination, compute the corresponding non-singular matrix U ∈ F(n−k)×(n−k)
q

such that UHI = In−k.
3: Choose a unit vector u.
4: return v = U⊺u.

Figure 4.5 – Prange Linear Attack

Proposition 4.4.4. The bias of the attack vector v produced by the algorithm of Figure 4.5 is equal to
n−k−2t
n−k · (

n−k
t )

2(nt)
.
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Proof. The bias is just the distance to 1/2 of the probability Pr [v⊺ · s = 0]. Let G be the “event the
information set picked is such that eI = 0” . In the following, Ec denote the complement of an event
E .

Pr [ v⊺ · s = 0 ] = Pr [ v⊺ · s = 0 | G ]× Pr [G] + Pr [ v⊺ · s = 0 | Gc ]× Pr [ Gc ] .

Pr [ v⊺ · s = 0 ] =
t

n− k
×
(
n−k
t

)(
n
t

) + Pr [v⊺ · s = 0 | Gc]×

(
1−

(
n−k
t

)(
n
t

) ) .
This left us with Pr [ v⊺ · s = 0 | Gc ] to analyze.

Pr[ v⊺ · s = 0 | Gc ] = Pr [ u⊺ ·UHe = 0 | Gc ] = Pr
[
u⊺ · (eI +UHIeI) = 0 | eI ̸= 0

]
.

As I is sampled randomly, and because H is initially sampled as a random matrix, the matrix
H1 = UHI can also be considered to be random. Then the UHIeI shall produce a well-balanced
column with high probability, and therefore

Pr
[
u⊺ · (eI +UHIeI) = 0 | eI ̸= 0

]
=

1

2
.

We obtain therefore,

Pr [ v⊺ · s = 0 ] =
t

n− k
×
(
n−k
t

)(
n
t

) +
1

2
×

(
1−

(
n−k
t

)(
n
t

) ) .
We can deduce

biasPrange(v) =
n− k − 2t

n− k
·
(
n−k
t

)
2
(
n
t

) .
We can again compare this to the expected time running time of the Prange algorithm: n(n−

k)
(
n
t

)
/
(
n−k
t

)
, which is naturally polynomially larger than 1/biasPrange(v). This is expected because

in the linear attack framework we are not taking into account the different polynomial costs induced
during the attack (in this case the cost of the Gaussian elimination). This is because we assume that
the adversary has an unlimited time in order to compute the attack vector v.

4.4.3 Birthday decoding algorithm

We now consider the birthday decoding algorithm. It builds on the famous so called birthday
paradox. The algorithm is described on Figure 4.6.

Proposition 4.4.5. The expected running time of the Birthday decoding algorithm is equal to 2
(
n
t

)
/
(n/2
t/2

)
+(

n
t

)
/2n−k = 2

(n/2
t/2

)
+
(
n
t

)
/2n−k .

Proof. Let C denote the number of column operations for the steps 2 and 3. The costs of the creation
of the lists Si is 2

(n/2
t/2

)
. Indeed, we are just enumerating the vectors ei ∈ Fn/2

2 . From the two lists of
size L, we can constitute L2 possible pairs The size of the interection is about L2/2n−k , and therefore,
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Input: Matrix H ∈ F(n−k)×n
2 , Vector s ∈ Fn

2 .
Output: e′ ∈ Fn−k

2 .
A (H):
1: Choose a subset I ⊂ [0, n− 1] of size n− k. Let H0 = HI and H1 = HI .

2: For i ∈ {0, 1}, create the sets Si =
{
Hiei + (1− i)s | ei ∈ Fn/2

2 , wt (ei) = t/2
}

.

3: Find the intersection between the two lists and extract the corresponding (e0, e1). If there is
no intersection go to step 1.

4: Construct e′ such that e′I = e0 and e′I = e1.
5: return e′.

Figure 4.6 – Birthday decoding algorithm

the computation of the interesection can be done in
(n/2
t/2

)2
/2n−k. Remark that a solution can be

found only if the Hamming weight e is such that wt (eI) = w/2. This is the case with probability

P =
(n/2
t/2)
(nt)

. To obtain the expectancy of the total number of operation we devide therefore the
number of operation in the case 2 and 3 by the probability. This gives

C/P =

(
2

(
n/2

t/2

)
+

(
n/2

t/2

)2

/2n−k

)
·
(
n
t

)(n/2
t/2

)2 = 2

(
n
t

)(n/2
t/2

) + (
n
t

)
2n−k

.

We end the proof with the approximations
(
n
t

)
∼
(n/2
t/2

)
.

Remark 4.4.1. The left-hand term
(
n
t

)
/2n−k is important to take into account only when we expect

multiple solutions. In our case, it will be negligible.

We identify an attack vector v that captures the essence of the Birthday decoding algorithm. We
consider it in the simpler case where k = n/2 for convenience. The attack vector corresponding is
produced by the algorithm of Figure 4.7.

Proposition 4.4.6. The bias of the attack vector v produced by the algorithm of Figure 4.7 is equal to

Pr [ v⊺ · s = 0 ] =
(n−2t)·

√
2

nt(n−t)

2(n/2
t/2)

.

Proof. Let us analyze Pr [v⊺ · s = 0]. Let G be the event wt (eI) = t/2, andH be the event e′1 = e1.

Pr [ v⊺ · s = 0 ] = Pr [ v⊺ · s = 0 | G ] · Pr [ G ] + Pr [ v⊺ · s = 0 | Gc ] · Pr [ Gc ]

We compute, for n and t going to infinity (via the Stirling formula):

Pr [ G ] =

(n/2
t/2

)2(
n
t

) ∼

√
2n

π · t · (n− t)
.

Moreover,
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Input: Matrix H ∈ F(n/2)×n
2 .

Output: v ∈ Fn/2
2 .

linearAttackBirthday(H):
1: Choose a subset I ⊂ [0, n−1] of size n/2 until HI is full rank. Let H0 := HI and H1 := HI .

2: Sample e′1
$← Fn/2

2 , wt
(
e′1
)
= t/2

3: Compute H−10 .
4: Search a row v⊺ of H−10 such that v⊺H1e1 = 0
▷ Such a vector exist with high probability:
▷ The probability that a row of H−10 , which is random, does not vanish H1e

′
1 is 1/2.

▷ Therefore, with probability 1− 1/2n/2, v exists.
5: return v

Figure 4.7 – Birthday Linear Attack

Pr [ v⊺ · s = 0 | Gc ] = Pr
[
u⊺e0 + u⊺H−10 H1(e1 − e′1) = 0 | Gc

]
.

Because u⊺H−10 H1(e1 − e′1) amounts to a non-empty sum of product of Bernoulli variables with
parameter 1/2. u⊺e0 on the other side is simply a biased Bernoulli. It follows that:

Pr [ v⊺ · s = 0 | Gc ] = 1

2
. (4.2)

Further we compute:

Pr [ v⊺ · s = 0 | G ] = Pr [ v⊺ · s = 0 | G,H ] · Pr [H ] + Pr [ v⊺ · s = 0 | G,Hc ] · Pr [Hc ] .

Note that
Pr[H] = 1(n/2

t/2

) .
Moreover

Pr [ v⊺ · s = 0 | G,H ] = Pr [ u⊺e0 = 0 | G,H ] = 1− t/n.

and

Pr [ v⊺ · s = 0 | G,Hc ] = Pr [ v⊺ · s = 0 | G,Hc ] = 1/2

where the last equality stands for the same reasons as for Equation (4.2). Adding everything together
yields

Pr [ v⊺ · s = 0 ] ∼
(n− 2t) ·

√
2

nt(n−t)

2
(n/2
t/2

) + 1/2.

We again verify that the inverse of the bias acts as an appropriate lower bound on the execution
time of the birthday paradox algorithm. We obtain again the same dominant factor

(n/2
t/2

)
.
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Chapter 5
PCGs for OLE correlations

In 2020, the first PCG (see Definition 3.1.3) to generate OLEs (see Definition 2.5.6) was proposed
by [BCGI+20b]. However, it was still limited, both by its efficiency and by the fact that it could
generate OLEs only over large fields. We provide another construction, using the QA-SD assumption
(defined Section 2.4.3), to almost entirely get rid of the constraint. This construction is a natural
generalization of the previous one, and offers much clearer insights on the security of the primitive.
In this chapter, we compare the two known constructions by describing a general framework that
encompass both. Additionally, we examine important optimizations to make this new QA-SD-based
construction more efficient. The results presented come from two works produced in collaboration
with Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, and Sacha Servan-Schreiber,
respectively accepted at Crypto 2023 and available on eprint [BCCD23; BBCC+24].
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5.1 State of the Art
Pseudorandom Correlation Generators (PCGs) were formally introduced in [BCGI+17; BCGI18;

BCGI+19b] as a method to generate random correlations while minimizing communication overhead.
Since then, this line of work has proven to be an attractive new area of research, attracting significant
interest and yielding promising outcomes. Various directions have been explored since the original
introductory articles. PCG targeting the Oblivious Transfer correlation (OT) has been extensively
studied for the past six years, making good use of the balance between the simplicity of OT and its
great importance 1. As mentioned in Section 3.1, successive works build their PCGs for OT using
function secret sharing (FSS, see Section 2.5.3.5), introduced by [BGI16]. With this powerful primitive,
parties can easily share sparse vectors. Then, using a syndrome decoding-like assumption (SD, see
Section 2.4.2), the parties can transform a sparse vector into a pseudorandom vector by multiplying
with some well-chosen matrix H. Because the additive sharing is linear, it appears that we can obtain
additive shares of pseudorandom long vectors. It became immediately apparent that the choice of
the matrix H was critical to propose a trade-off between efficiency and security. This has been the
subject of most of the work done since then.

[BCGI18; BCGI+19b] initially proposed the use of LDPC codes or quasi-cyclic codes, which
offer a nice balance between efficiency and security. These classes of codes have been studied for a
long time, especially the syndrome decoding assumption in the context of cryptographic primitives
([Ale03; AABB+22a]). Subsequent research to find the best code continued under increasingly exotic
assumptions (though still proven to resist most known attacks) with the following works [BCGI+20a;
BCGI+22; RRT23]. The authors constructed their PCGs using variants of syndrome decoding, tailored
for respectively Variable Density Codes, Expand and Accumulate Codes, and Expand-Convolute Codes.
The former additionally achieves the property of providing PCF construction, as will be elaborated
in Chapter 7. While all these papers originated from the code as a basis for constructing the PCG,
[CRR21] attempted to construct the code iteratively, via computer simulations and heuristics to
achieve more aggressive results (the proposed code was finally proven insecure by [RRT23], but
the approach remains interesting). All in all, the best PCGs for OT achieve, as demonstrated in
[BCGI+22; RRT23], up to 10 million OT correlations per second, on one core of a standard laptop,
while remaining silent as requested by the PCG framework (meaning communication in log(m)
for m generated OT, see Section 3.1). The silent requirement is crucial to the construction. Other
techniques, not silent, can achieve faster OT generators: the SoftSpoken OT expansion protocol by
Roy [Roy22] yields a faster OT generation reaching up to 30 million OTs on localhost. Nonetheless,
this comes with a trade-off of increased communication, up to 64m for m generated OT (other
communication/computation trade-offs are possible, see [Roy22, Table 1]). When considering N
parties, the communication scales with aN(N−1). As our ultimate goal is to execute MPC protocols
with multiple players, this is not practical as soon as N ∼ 100.

Concerning more involved correlations such as OLE or multiplication triples, the state of the
art is less substantial. Constructing efficient PCG for OLE is the focus of the current chapter. In
2019, [BCGI+19b] proposed two ideas in order to achieve the OLE correlation. Both were inefficient,
with very large seed size, and only efficient when generating huge batches. The first one was
based on homomorphic secret sharing from ring-LWE ([BKS19]), the second was based on LPN
and suffered from big computational costs. In 2020, an efficient solution was found [BCGI+20b],
matching the best non-silent protocol [KPR18]. Nevertheless, we will show that this construction
was unfortunately created with an inherent tedious constraint since it is usable only over large
fields. The following sections will, in particular, provide insights on how to bypass (almost entirely)

1. they are building blocks of Beaver Triples which are important for the protocols used in Section 2.5.4.1
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this constraint, using our work from Crypto2023 [BCCD23]. Note that the previously mentioned
works [BCGI+20a; BCGI+22] could be used as a PCG for OLEs (we follow what was outlined in
Section 3.1.3.1). Concretely, each of the constructions builds on the fact that it is hard to distinguish
H · e from random, where H is a carefully chosen sparse or structured matrix. Additionally e1 · e2⊺
can be shared using an appropriate FSS scheme since e1, e2 and e are all λ log(n)-sparse vectors 2.
In this scenario, extracting the diagonal of He1e

⊺
2H

⊺ (which is the component-wise product of He1
and He2, hence gives n pseudorandom OLEs) does not require computing the full matrix, and scales
in poly(λ) · Ω̃(n). This basic construction will be explained in detail Section 5.2, in the case of a
random matrix H. Remark that in these constructions, no constraints on the size of the field are
required. Nevertheless, a closer look reveals some bad news. Indeed, the constant overhead turns out
to be prohibitive in these cases. For example, in our recently published work of [CD23], we explained
that they need a security parameter λ (number of noisy coordinates) as big as 350 for the assumption
to be valid. Remember that if the Hamming weight of the noise vector e is equal to λ log(n), the
number of FSS calls is then λ2 log(n)2. Taking n = 230, this entails around 108 invocations of FSS
calls for each OLE produced which is highly impractical.

How to Read this Chapter

We recommend the reader to consult Chapter 3 for a general understanding of the PCG primitive.
Additionally, we will use extensively syndrome decoding and its variants, presented in Sections 2.4.2,
2.4.2.2 and 2.4.3. This chapter is structured as follows: Section 5.2 describes a first unfruitful con-
struction of PCG for OLE and argues for the need for constructions using structured matrices, and
therefore structured rings. Secondly, Section 5.3 presents a general framework for a PCG for OLE over
a general ringR, as long asR satisfies certain properties. Section 5.4 explains how both [BCGI+20a;
BCCD23] fit into the general framework. Section 5.5 addresses some efficiency optimizations from
[BCCD23] and [BBCC+24]. Finally, in the last section Section 5.6, we present a full MPC protocol
from start to finish, FOLEAGE, which is fully optimized and state-of-the-art in numerous aspects
according to our work [BBCC+24].

5.2 A First Unfructuous Tentative
In this section, we sketch out a simple method to obtain PCG for OLE, and argue for its short-

comings. This idea was briefly mentioned in Section 5.1 when explaining how the design of the PCGs
for OLE from [BCGI+20a; BCGI+22; RRT23]. First, we recall in figure 5.1 the ideal functionality we
expect from the PCG.

Figure 5.2 describes the protocol. Let H be a public random matrix. Party σ starts by generating
eσ , a sparse vector of weight t. Then, party σ computes xσ = Heσ for eσ . Using FSS, parties
obtain small FSS keys (K0,K1)

$← SPFSS.Gen(1λ, 1n, A,B), where B denote the position of the
non zero position in the matrix e0 · e⊺1, represented as a vector of size t2, and A the associated list of
non-coefficients.

.The seed given by the PCG to party σ is then kσ = (Kσ, eσ). From the seed, party σ can
compute uσ = SPFSS.FullEval(σ, e0 · e⊺1). The protocol stops after that party σ computes zσ =
Diag(HuσH

⊺). Here, Diag(A) returns the diagonal of the matrix A.
This protocol is correct, as we can verify the following:

z0 + z1 = Diag(Hu0H
⊺) + Diag(Hu1H

⊺),

2. Meaning element non-zero on exactly λ log(n) entries.
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Ideal Functionality PCGOLE

Parameters: Security parameter λ, PCGOLE = (PCGOLE.Gen,PCGOLE.Expand).
Functionality:
1: Sample (k0, k1)← PCGOLE.Gen(1

λ).
2: Output kσ to party Pσ for σ ∈ {0, 1}.
3: Party σ expands locally (xσ, zσ)← PCGOLE.Expand(σ, kσ), with x0x1 = z0 + z1.

Figure 5.1 – Functionality OLE.

and by definition of the SPFSS primitive it can be rewritten as follows:

z0 + z1 = Diag(He0 · e⊺1H
⊺) = Diag(x0 · x⊺

1).

Looking at the i-th entries of the vectors we obtain

zi0 + zi1 = xi
0 · x

i
1.

Remark that each entries of the vectors define an OLE.
Moreover, the protocol is also secure. First, upon examining their definitions x0 and x1 are plain

syndromes. When the matrix H is random, we are exactly within the setting of standard Syndrome
Decoding presented in Section 2.4.2 and Definition 2.4.7. The assumption guarantees exactly the
pseudorandomness of x0 and x1. Second, assuming the SPFSS scheme is secure, both z0 and z1 are
pseudorandom. Therefore, we obtain the security requirements demanded by PCG.

Finally, it should be noted that eσ is sparse and therefore of short description, and the FSS keys
Kσ are also of short description. Therefore, the protocol satisfies also the requirements about the
size of the seed kσ .

5.2.1 A Dream End

Sadly, this construction is not efficient and cannot be used in practice. Looking at the definition
of zσ , the parties have to compute HuσH

⊺, for a uσ not sparse (even pseudorandom). Since we
assume that H is a random matrix, the cost of the matrix multiplication is in Ω(nϵ), with ϵ ≈ 2.8
from Strassen’s algorithm [STR69] (further improvements on ϵ assumes absurd memory size and are
therefore not taken into account here). The cost of the multiplication, performed here twice, is a
deal-breaker for the method, as the target number n of OLEs to generate is very large (≈ 230) (see
Chapter 1). To be more precise about the computation:

HuσH
⊺ = He0e

⊺
1H

⊺.

Let index the t non-zero coordinates of e0 by the set {i0, . . . , it−1}. We do similarly for e1, which
is indexed by the set {j0, . . . , tj−1}

He0 =

t−1∑
k=0

Hik
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Tentative construction of PCG for OLE

Parameters:
Security parameter λ, noise weight t = t(λ). An FSS scheme (SPFSS.Gen,SPFSS.FullEval) for
sums of t2 point functions, with domain [0 . . . n) and range Fq .

Public Input: Random matrix H ∈ F(n−k)·n
q .

PCG.Gen(1λ):
1: foreach σ ∈ {0, 1}:

1.1: eσ ← {e ∈ Fn
q , wt (e) = t}

2: Let A = {(e0 · e⊺1)[i][j] | i, j ∈ [n], (e0 · e⊺1)[i][j] ̸= 0} and B = {i · n + j | i, j ∈
[n], (e0 · e⊺1)[i][j] ̸= 0}

3: Sample FSS keys (K0,K1)
$← SPFSS.Gen(1λ, 1n, A,B)

▷ B denote the position of the non zero position in the matrix e0 · e⊺1,
▷ represented as a vector of size t2, and A the associated list of non-coefficients.

4: Let kσ = ((Kσ), eσ).
5: Output (k0, k1).

PCG.Expand(σ, kσ):
1: Parse kσ as ((Kσ), eσ).
2: Define xσ = Heσ .
3: Compute uσ ← SPFSS.FullEval(σ,Kσ).
4: Compute zσ = Diag(HuσH

⊺).
▷ Diag(A) denote the diagonal of the matrix A.

5: Output xσ, zσ .

Figure 5.2 – Tentative PCG for OLE over Fq

and

He1 =

t−1∑
k=0

Hjk .

Because Diag(·) is linear, we obtain

Diag(xy⊺) =
∑

0⩽l,k⩽t−1
Diag(HikH

⊺
jl
).

Looking at the core calculations, we have to perform all these distinct vector multiplications,
while H is perfectly random. To reduce the number of calculations, one could consider using a
more structured or sparse matrix H. Indeed, with such a matrix, certain steps could be avoided and,
consequently, the costs of the total multiplication would be reduced. This is the idea behind what
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was presented in Section 5.1, to use very sparse matrices to reduce the computation cost (even if that
was still not enough). In what follows we will not suppose the matrix H to be sparse, but suppose
that it is structured. More precisely, we will consider a random matrix on a special ring R which
achieves some properties. The ring will convey the structure.

5.3 A PCG for OLE Framework
In this section, we describe a general framework for overcoming the efficiency problem encoun-

tered in the previous section. We recommend reading Section 2.4.2.2 for a better understanding of
this section. What follows is an abstraction of the framework used by [BCGI+20b] and [BCCD23;
BBCC+24] to produce a PCG scheme for OLE correlations.

5.3.1 Appropriate Ring

We describe a certain class of ringR upon which we know how to create a PCG.

Definition 5.3.1. We say that a ringR is appropriate when:

— R is equipped with a structure of Fq vector space, inducing a canonical notion of sparsity after
the choice of a basis, as explained in Section 2.4.2.2.

— R is isomorphic 3 to a product of n copies of Fq .

— A variant of Syndrome Decoding is valid inR, and we call itR-SD (see Definition 2.4.9).

— The multiplication of two elements ofR can be performed efficiently.

— The sparsity defined on R enjoys weak stability: the result of a multiplication of two t-sparse
elements shall produce a t′-sparse element, t′ ⩽ t2.

Theorem 5.3.1. LetR be an appropriate ring. We assume that we have access to an SPFSS primitive,
which is a secure FSS scheme for sums of point functions. Then there exists a generic scheme to construct
a PCG to produce one OLE correlation overR, and the protocol is described in Figure 5.3.1.

The PCG construction can be summed up as follows:

1. Choose an appropriate ringR, and a public element a ∈ R.
2. The parties generate private t-sparse elements (e0σ, e1σ) ∈ S(R, t)
3. The parties compute xσ = ae0σ + e1σ . According to the specific associated Syndrome Decoding

assumption xσ appears to be random.
4. The parties use Function Secret Sharing (see Section 2.5.3.5) to obtain shares of the products

(the e00 · e01, e10 · e01, e00 · e11, e10 · e11). Thanks to the weak stability, these products are t2-sparse.
5. The parties use their shares of the sparse products to obtain a secret sharing of x0x1 =
a2(e00e

0
1) + a(e10e

0
1 + e00e

1
1) + e10e

1
1.

This protocol is typical of the general approach to create a silent PCG. Each party creates an
element xσ with a hidden sparse structure. The structure enables the construction of the correlation
from scratch because of the very powerful Functions Secret Sharing (FSS) primitives. Because of
the hidden structure of x0 and x1, the product x0x1 also has a hidden structure. More precisely,
in this case, we have x0x1 = a2(e00e

0
1) + a(e10e

0
1 + e00e

1
1) + e10e

1
1. This expression is linear in the

3. as a ring
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products of the sparse elements (ei0e
j
1)i,j∈{0,1}. Therefore, if there exists a method for sharing these

products, then we obtain a method to compute compressed additive shares of zσ = x0x1. This is
exactly what FSS can offer, as it provides a compressed seed that can be expanded into a sharing of
the sparse elements. We guarantee that the elements xσ appear pseudorandom because of theR-SD
assumption over the chosenR holds.

Remark 5.3.1 (Compression Factor). In the informal presentation above we have used the standard
and simple version of Syndrome Decoding of the form xσ = ae0σ + e1σ . A more general version,
used in the protocol described in Figure 5.3.1, consists of using the more general module version
of the assumption, mentioned in Definition 2.4.6. In this version, the players hold vectors eσ =
(e0σ, · · · , ec−1σ )⊺, and vectors aσ = (1, a1 . . . , ac−1)

⊺ with c ⩽ 1 denoting the compression factor. The
assumption then states that

⟨a, eσ⟩ = e0σ + e1σa1 + · · ·+ ec−1σ ac−1

is indistinguishable from random. The influence of the compression factor will be discussed in
Sections 5.5 and 5.6.

We give thereafter a proof of Theorem 5.3.1.

Proof. Refer to Figure 5.3.1 for the definition of the different variables. First, we argue for the
correcteness of the protocol. Remark that u = u0 + u1, which therefore can be rewritten as
u = e0 ⊗ e1. Each entry of u is therefore equal to one of the ei0e

j
1. Moreover, observe that

z0 + z1 = ⟨a⊗ a,u0 + u1⟩ = ⟨a⊗ a, e0 ⊗ e1⟩ = ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1.

The next-to-last equality is straightforward to check. Note that here, ⟨a, eσ⟩ is aR-SD sample, with
fixed random a and independent secret eσ .

Now, we argue for the security reduction of the proof. The subsequent analysis follows the same
path as the original analysis of [BCGI+20b], but adapted to our more general study case. Because
the proof is symmetrical, we prove the security reduction only in the case σ = 1. Consider the pair
(k0, k1)

$← PCG.Gen(1λ) associated with the expanded outputs (x0, z0) and (x1, z1). The security
guarantee of the PCG requires that{

(k1, x0, z0)
}
≈
{
(k1, x̃0, z̃0) | x̃0

$← R, z̃0 = x̃0 · x1 − z1
}
.

This result can be shown via a sequence of hybrid distributions.
First, remark that {(k1, x0, z0)} ≈ {(k1, x0, x0 · x1 − z1)}. What we would like to do here

is to replace x0 by x̃0 using the R-SD assumption. However, we cannot do that directly because
k1 = ((Ki,j

σ )i,j∈[0...c), (A
i
σ, c

i
σ)i∈[0...c)) depends directly on x0. Nevertheless, what we can do is

first to replace, step by step, the FSS keys Ki,j
1 in k1 with simulated keys generated only with the

range and the domain of the function. Because we suppose the FSS scheme is secure, we maintain
indistinguishability at each step. Then, when all the keys have been replaced by simulated keys,
we can replace x0 by a fresh x̃0 $← R, and we obtain {(k̃1, x̃0, x̃0 · x1 − z1)}. This is still secure
because we removed all dependencies on x0 in k1, and because of the R-SD assumption. Finally,
we transform back the simulated keys given by the FSS by the original keys. This is allowed by the
assumption that the FSS scheme we use is secure (indistinguishability works both ways). Finally, we
proved
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General construction of Ring-OLE

Parameters:
Security parameter λ, noise weight t = t(λ), compression factor c ⩾ 2,R an appropriate ring,
equipped with a basis B. An FSS scheme (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point
functions, with domain [0 . . . |B|) and range Fq .
Public Input: c− 1 random ring elements a1, . . . , ac−1 ∈ R.

PCG.Gen(1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: Ai
σ ← (b1, . . . , bt)bi∈B and ciσ ← (F∗q)t.

▷ Each pair Ai
σ, c

i
σ defines a sparse element ofR

▷ The former indicates the elements of the basis that describes it.
▷ The latter their associated coefficients.

1.2: Output xσ, zσ .
2: foreach i, j ∈ [0 . . . c):

2.1: Sample FSS keys (Ki,j
0 ,Ki,j

1 )
$← SPFSS.Gen(1λ, 1n,Ai

0 ⊗Aj
1, c

i
0 ⊗ cj1).

▷ For all i, j ∈ [0 . . . ), Ai
0 ⊗Aj

1, c
i
0 ⊗ cj1, represent

▷ the product of two sparse elements ofR.
3: Let kσ = ((Ki,j

σ )i,j∈[0...c), (A
i
σ, c

i
σ)i∈[0...c)).

4: Output (k0, k1).

PCG.Expand(σ, kσ):
1: Parse kσ as ((Ki,j

σ )i,j∈[0...c), (A
i
σ, c

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c),
2.1: Define the element of S(R, t),

eiσ =
∑

j∈[0...t)

Ai
σ[j] · c

i
σ[j].

3: Compute xσ = ⟨a, eσ⟩, where a = (1, a1, · · · , ac−1)⊺, eσ = (e0σ, · · · , ec−1σ )⊺.
4: foreach i, j ∈ [0 . . . c),

4.1: Compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j
σ ) and view it as a c2 vector of elements in

S(R, t2).
▷ Let uσ = (uσ,i+cj)i,j∈[0... )

5: Compute zσ = ⟨a⊗ a,uσ⟩.
6: Output xσ, zσ .

Figure 5.3 – PCG for OLE over an appropriate R.



72 PCG for OLE correlations constructions

{
(k1, x0, z0)

}
≈
{
(k1, x̃0, z̃0) | x̃0

$← R, z̃0 = x̃0 · x1 − z1
}
,

and this concludes the proof.

Theorem 5.3.2. Given an appropriate ringR ≃ Fn
q , there exists a PCG construction based onR-SD

producing n independent OLEs over Fq .

Proof. We have already proven that when working over an appropriate ringR, the protocol described
on Theorem 5.3.1 achieves creating a single OLE over R. To obtain numerous fresh instances of
the OLE correlations, the core idea of the construction is to use the isomorphism ϕ betweenR and
Fn
q . The existence of such an isomorphism is a condition for R being appropriate. Then, because

of the pseudorandomness of (xσ, zσ), all the entries of ϕ(xσ, zσ) computed by the isomorphism
are indistinguishable from random, and satisfy still the OLE correlation. Thus, this concludes the
proof.

Up to now, the literature has come up with two distinct constructions, based on two different
ringsR.

— In [BCGI+20b], the authors choseR to be a quotient ring of Fq[X]/P (X) for a polynomial P
that split perfectly.

— In [BCCD23], we choseR to be a group algebra Fq[G], for a specific group G.

In Section 5.4, we discuss the choice ofR, and the limitations of the constructions.

5.3.2 Additional Property

We prove that the protocol satisfies an important property.

Proposition 5.3.1. The PCG thus defined is a programmable PCG (see Section 3.3).

Proof. For the formal definition of programmable PCG, refer to Appendix A. Some adjustments are
needed to show properly that the PCG is indeed programmable. Our goal is to show that players
can decide the value of their first input (in this case xσ), by controlling some additional inputs (ρσ).
Formally, we want to show the existence of a computable function ψσ : {0, 1}∗ → (S(R, t))n, such
that

Pr
ρ0, ρ1

$← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)
(R0, S0)← PCG.Expand(0, k0),
(R1, S1)← PCG.Expand(1, k1)

[
R0 = ψ0(ρ0), R1 = ψ1(ρ1)

]
⩾ 1− negl(λ).

Let ρσ =
{
Ai

σ, c
i
σ

}
be the additional input. It is a representation of the vector of elements in S(R, t),

eσ = (e0σ, . . . , e
c−1
σ ). xσ is defined as xσ = ⟨a, eσ⟩. This directly defines the two functions ψσ ,

and proves the programmability property of a programmable PCG. Concerning the programmable
security, we provide a proof once again from a series of hybrid distributions, exactly in the same
fashion we already did for the security reduction of the construction in the proof of Section 5.3.1.
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The proof is symmetrical depending on the choice of σ. Hereafter, we suppose that σ = 1. We want
to show that the following distributions{

(k1, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)

}
and{

(k1, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1, ρ̃0 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ̃0, ρ1)

}

are computationally indistinguishable. The different steps of the series of hybrid distributions are as
follows:

— Add ρ̃0 to be sampled randomly.
— For 0 ⩽ i, j ⩽ c− 1, replace each FSS key Ki,j

1 of k1 by a fresh randomly simulated key of the
same range and domain. Under the assumption that our FSS scheme is secure, all the hybrid
distributions are indistinguishable from one another.

— Using the localR-SD assumption, replace PCG.Gen(1λ, ρ0, ρ1) by PCG.Gen(1λ, ρ̃0, ρ1).
— We transform back the simulated keys of k1 by their original, thanks to the FSS security

assumption (again, the indistinguishability works in both directions).
This concludes the proof.

5.4 Choice of the RingR
In this section, we discuss the different candidates R that could be used in Figure 5.3.1. We

recommend reading Sections 2.4.2.2 and 2.4.3 for a better understanding of this section. We will
present the two choices chronologically: first, we will suppose that R = Fq[X]/(P (X)), for a
polynomial P ∈ Fq[X] that splits into distinct monomials over Fq , then we will considerR = Fq[G],
that is, a group algebra for some abelian group G.

5.4.1 UsingR = Fq[X]/(P (X))

Here we focus on the original construction by [BCGI+20b]. In this construction, the authors
chose to takeR to be a quotient ring:

R = Fq[X]/(P (X)),

where P denotes a polynomial of degree n that can completely split, meaning that it verifies P (X) =∏n−1
i=0 (X − ri) for distinct ri’s in Fq . We will present why this choice is interesting, and what its

limitations are.

Proposition 5.4.1. R = Fq[X]/(P (X)) is almost appropriate: it satisfies all the conditions to be an
appropriate ring except the last one (weak stability).

Proof. There are four different requirements to prove.
1. Fq[X]/(P (X)) is an Fq-vector space structure, and therefore, it possesses a canonical notion of

sparsity: the monomials form a basis of Fq[X]/(P (X)), and a polynomial e ∈ Fq[X]/(P (X))
is said to be t-sparse when it contains no more than t monomials in its description.
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2. Because we supposed thatP splits completely into linear factors, we obtain thatFq[X]/(P (X)) ≃
Fn
q using the Chinese Remainder Theorem.

3. The equivalent of Syndrome Decoding in Fq[X]/(P (X)) is then the standard Ring Syndrome
Decoding assumption (or Ring-LPN in the literature). This assumption has been analyzed in
various works ( [BL12; DP12; LP15; GJL15]) but not exactly in the case of a polynomial P that
splits completely. The authors provided an ad hoc analysis of this assumption, exactly tailored
to their needs.

4. There has been a long tradition of works focused on performing very fast polynomial multipli-
cations in Fq[X]/(P (X)), by using FFT, breaking the barrier of n2.

Unfortunately, Fq[X]/(P (X)) does not satisfy entirely weak stability, which guarantees that a
product of two sparse elements is sparse. The authors address this problem by tweaking the protocol
slightly: they generate sparse elements e0, e1 of Fq[X]/(P (X)), but they consider them living in
Fq[X], in which they are still sparse. In Fq[X], weak stability is trivially achieved. From there, the
authors performed the FSS scheme over the product e0e1 seen in Fq[X] (of maximum degree known
= 2n). Each party obtains a u′ = SPFSS(e0e1) ∈ Fq[X], which they can then transform into u = u′

mod P . Because of the modulo is linear, it is as if we could use FSS for non-sparse polynomials. As
the goal was to obtain an additive sharing of the product e0e1, the protocol can continue unchanged.
The security is not threatened by the change, nor is this efficiency.

The cost of generating 220 OLEs was estimated to be 10 seconds [BCGI+20b, Section 9], resulting
in approximately 105 OLEs produced per seconds in this context. This is still about 2 orders of
magnitude slower than the state of the art concerning OT.

5.4.1.1 A Tedious Constraint

The scheme suffers from a major limitation, stemming inherently from the structure of the ring.
Fq[X]/(P (X)) ≃ Fn

q by the Chinese Remainder theorem. n is the degree of the polynomial, but also
the number of distinct roots of P , and finally the number of OLEs generated. This means that in
order to generate n OLEs, we need to have n distinct roots in Fq . This is possible only if there is
enough space in Fq , therefore

q ⩾ n.

We can convince ourselves that it is a tedious constraint. Indeed, recall from Section 2.5.4.2 that
standard functions of interest require n ∼ 230. Therefore, in the case R = Fq[X]/(P (X)), the
protocol produces OLEs only over very large finite fields.

Remark 5.4.1 (About the choice of polynomial). As stated in the description of Fq[X]/(P (X)), we
want to choose a polynomial P of degree n that splits entirely, in order to obtain as many copies of
Fq as possible. Nevertheless, one must be cautious when deciding on which polynomial P to use. In
[BCCD23] we remarked that some restrictions, not noticed by [BCGI+20b], have to be considered:
namely, one could think of using the polynomial P (X) = Xq −X which splits entirely and has
for roots all the elements in Fq . This would be a natural choice in order to maximize the number of
OLEs produced. Unfortunately, this does not work: consider an R-SD sample (a, ae+ f), a ∈ R
and e, f ∈ S(Fq[X]/(P (X)), t) t-sparse elements of Fq[X]/(P (X)). Since there is no constant
coefficient in Xq −X , multiplying two non-constant monomials will never result in a polynomial
with a non-zero constant term. Therefore, the evaluation at 0 and the multiplication in Fq[X]/(P (X))
commute. Consequently, (ae+ f)(0) = a(0)e(0) + f(0). Because e and f are sparse, their constant
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coefficient is likely to be zero, and therefore, the evaluation at 0 is biased. Needless to say, this is not
the case for a random element of Fq[X]/(P (X)). Note that it does not mean that this framework
does not work. If one is a bit cautious and chooses P (X) = Xq−1 − 1, then the previous attack does
not apply; while being still able to split P (X) =

∏
r∈F∗

q
(X − r). This comes at the (minor) cost of

not maximizing the number of copies that Fq could provide.

5.4.2 UsingR = Fq[G]

In what follows, we aim to address one of the main issues that the previous constructions suffer
from: the lower bound on q. LetR be a group algebra:

R = Fq[G]

for G the following an abelian group:

G =
n∏

i=1

Z/(q − 1)Z.

Necessary background on group algebra and quasi-abelian codes is given in Section 2.4.3. Recall that
given a group G, Fq[G] denotes the set of all the formal sums of elements of Fq[G] with coefficients
ai ∈ Fq . We will demonstrate the five different requirements to establish that Fq[G] is an appropriate
ring which includes proving the new security assumption, i.e. the QA-SD assumption.

Proposition 5.4.2. R = Fq[G] comes with a canonical basis, given by the elements of the group G
and therefore enjoys a canonical notion of sparsity. , it respects the weak stability: the multiplication of
two t-sparse elements is at most t2-sparse.

Proof. An element x ∈ Fq[G] is considered t-sparse if at most t of its coefficients ai are non-zero.
We aim to prove that the product of two elements of S(Fq[G], t) is in S(Fq[G], t2). Let e, f

be two sparse elements. Let Se, Sf be the two sets such that Se, Sf ⊂ G, |Se| = |Sf | = t, and
e =

∑
g∈Se

egg and f =
∑

g∈Se
fgg. Then, the product e · f can be expressed using only Se • Sf :=

{gh | g ∈ Se, h ∈ Sf} as a basis. Since |Se • Sf | < |Se| · |Sf | = t2, we deduce that weak stability is
achieved.

Proposition 5.4.3. If G is a finite abelian group,R = Fq[G] is isomorphic to a product of Fq , q > 2.

Proof. It was proven in Proposition 2.4.3, that assuming that for any abelian group G =
∏n

i=1 Z/qiZ,
qi ⩾ 3, we have

Fq[G] = Fq

[
n∏

i=1

Z/qiZ

]
≃ Fq[Z/q1Z]⊗Fq · · · ⊗Fq Fq[Z/qnZ]

≃
n⊗

i=1

Fq[Xi]/(X
qi
1 − 1) ≃ Fq[X1, .., Xn]/(X

q1
1 − 1, . . . , Xqn

n − 1).

Note that we set G =
∏n

i=1 Z/(q−1)Z. Thus, we haveR = Fq[G] ≃ Fq[X1, . . . , Xn]/(X
q−1
1 −

1, . . . , Xq−1
n − 1). The elements of F∗q are precisely the roots of the polynomial Xq−1

i − 1. Therefore,
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we can writeXq−1
i −1 =

∏
a∈F∗

q
(Xi−a), for all 1 ⩽ i ⩽ n and, by the Chinese Remainder Theorem,

we get

Fq[X1, . . . , Xn]/(X
q−1
1 − 1, . . . , Xq−1

n − 1) ≃
(q−1)n∏
i=1

Fq.

Remark 5.4.2 (About the tedious constraint of Fq[X]/(P (X))). We showed in the previous section
thatR = Fq[X]/(P (X)) suffers from a limitation that restricts the construction to very large fields.
This is no longer the case when usingR = Fq[G]. We generate T = (q − 1)n OTs when using the
CRT isomorphism, and it does not depend solely on q. Therefore, to produce OLEs over small fields,
we can increase the size of the group n.

5.4.2.1 Security of QA-SD Assumption

It remains to prove that the currentR-SD assumption is valid forR = Fq[G]. This leads us to
examine the reliability of the QA-SD assumption, as defined in Section 2.4.3, which we restate below.

Definition 5.4.1 ((Decisional) Quasi-Abelian Syndrome Decoding assumption). Let (n, k, t) =
(n(λ), k(λ), t(λ)) be parameters polynomial in the security parameter λ, and let G be an abelian
group. The goal of the decisional Quasi-Abelian Syndrome Decoding problem is to distinguish, with a
non-negligible advantage, between the distributions

D0 : (a, s) where a, s $← Fq[G],

D1 : (a, a · e1 + e2) where a $← Fq[G] and ei
$← S(Fq[G], t)).

The Decisional Quasi-Abelian Syndrome Decoding over a ring assumption, denoted by QA-SD,
states that this problem is hard. That is, for every polynomial-time algorithm A, it holds that

∣∣∣∣∣ Pr
a

$← Fq [G], (e0,e1)
$← S(Fq [G],t)

[ A(a, ae0 + e1) = 0 ]− Pr
(a,s)

$← Fq [G]

[ A(a, s) = 0 ]

∣∣∣∣∣ ⩽ negl(λ).

where negl denotes a negligible function.
Following the template provided in Section 4.2, our objective is to demonstrate the security of

these assumptions against linear attacks, as they encompass the majority of the attacks against a
Syndrome Decoding like assumption.

Conjecture 5.4.1. The QA-SD is secure against linear attacks.

Proof. Let H = (In | Ma) be the matrix associated with the problem, as defined in Section 2.4.3,
Definition 2.4.10, where In is the identity matrix of size n. In the case of the module variant, we would
take H = (In |Ma1 | · · · |Mac−1). We use here the classical equivalence (see Proposition 4.3.1)
between resistance against linear tests and the high minimum distance of the code generated by H.
Our goal is to prove that with high probability over the choice of H, the minimum distance of the
code generated by H is large.

Several restricted versions of the QA-SD assumption have been previously analyzed. Remark
that the assumption can be equivalent to a standard assumption for some specific choices of G: when
taking G = {1} the assumption is the standard SD assumption for random codes, that have been
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studied for years. Recall from Proposition 2.4.2 that it is well known that random codes reach the
Gilbert-Varshamov (GV) bound (you can refer to the works of [Pie67; BF02; Deb23a]). After the
pure random code, the focus has been on whether an analog result could be achieved by quasi-cyclic
code. This class of codes has been studied by Kasami [Kas74] and then Gaborit and Zémor [GZ06], in
which they introduced a GV-like bound in order to prove that quasi-cyclic codes enjoy high minimal
distance. Finally, in 2015, Fan and Lin [FL15] improved the result for every quasi-abelian codes.

Theorem 5.4.1 ([FL15, Theorem 2.1]). Let G be a finite abelian group, and let (Cℓ)ℓ be a sequence of
random quasi-G codes of length ℓ ∈ N and rate r ∈ (0, 1). Let δ ∈ (0, 1− 1

q ). Then,

lim
ℓ→∞

Pr

[
dmin(Cℓ)

|G|
> δℓ

]
=

{
1 if r < 1− hq(δ);
0 if r > 1− hq(δ);

}
,

and both limits converge exponentially fast. The above probability is taken over the uniform choice of a
generator matrix Gℓ ∈ Fq[G]k×ℓ of Cℓ.

This result is asymptotic, as it is often the case in coding theory. Actually, the coefficient in the
exponent depends on the size of the group G, and therefore, the bigger the group, the more likely we
are to get a good linear distance. Nonetheless, we could hope to improve this result in order to fit
better our use case: in the theorem, while the rate is fixed, (k, ℓ) are growing; whereas we consider
in our application a matrix with a fixed number of blocks (equal to c the compression factor). This
is a lead for future work. Then, one has to be careful that having a matrix H with a nice minimal
distance when considered over Fq[G] entails a matrix H with a nice linear distance when seen over
Fq . In the case of random quasi-G codes, it is likely to occur.

In addition to this result, group algebras offer efficient ways to perform multiplications.

Proposition 5.4.4. Fast operations are possible inR = Fq[G].

Proof. We defer the proof to Section 5.5 where we analyze in detail the multiplication over Fq .

All the conditions have been proven. Therefore,

Proposition 5.4.5. R = Fq[G] is appropriate.

Remark 5.4.3 (Link with R = Fq[X]/(P (X))). Following Remark 5.4.1, note that in the case
P (X) = Xq−1−1, Fq[X]/(P (X)) is a group algebra, as it corresponds to Fq[G] in the case G = F∗q .

5.4.2.2 Limitation of the Construction

Using the QA-SD assumption and takingR to be the group algebra Fq[G],G =
∏n

i=1 Z/(q −
1)Z, q ⩾ 3 has offered us the possibility to create a PCG to generate many OLEs over Fq , for q ⩾ 3.
Therefore, we have managed to shrink down the condition q > n, with n being the number of OLEs
produced to q ⩾ 3, covering all cases except for q = 2. This is in fact inherent to the structure of the
group algebra itself. Looking at (F2)

n (product of n copies of F2) there is only one invertible element
(the full 1 vector). We are looking for a group algebra that is isomorphic to (F2)

n. This means that
there will be only one invertible element in the group algebra as well. On the other side, a group
algebra has only one invertible element when |G| = n = 1, meaning that we would produce only 1
OLE over Fq . For this reason, the framework is interesting only when q ⩾ 3.
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One might think that this is not a problem, as OLEs over F2 are just OTs, and we already have
efficient constructions for OTs. While this is true, an important reason to push this specific PCG
construction down to q = 2 is that it enjoys, as shown in Section 5.3, the programmability property, a
property that known constructions of PCG for OT do not satisfy. As sketched in part Section 3.3 the
programmability property is essential for silent secure computation both for the malicious setting or
to do MPC with more than 2 players.

Next, we investigate other unfruitful choices ofR to obtain the PCG over F2.

5.4.3 Other PossibleR

In this section, we question ourselves about other choices of R that may lead to interesting
results and illustrate some attempts that end up getting broken. A natural candidate in order to reach
production of OLEs over F2 is the set of boolean functions

R = F2[X1, . . . , Xn]/(X
2
1 −X1, . . . , X

2
n −Xn).

This structure has been deeply studied (mostly in symmetric cryptography) and is isomorphic to
2n copies of F2, due to the fact that X2 −X = X(X + 1). As before, we can obtain fast operations
in R thanks to the use of FFT (usually called fast Walsh or Hadamard transform in symmetric
cryptography). Additionally, there exists a canonical notion of sparsity. For a function f ∈ R, we
can express f(X1, . . . , Xn) =

∑
u∈F2

auX
u, with au ∈ F2, and where Xu = X1

u0Xu2
2 . . . Xun

n .
As before, we can consider an element to be sparse if it has few au ̸= 0. All in all, boolean functions
seem to be a very solid candidate in order to achieve PCG for OLE over F2. Unfortunately, the
construction does not support security analysis.

5.4.3.1 An Attack Against Boolean Function Syndrome Decoding

This attack is is, in fact, the very same attack idea presented in Remark 5.4.1. Concretely, consider
being given an OLE sample (a, as+ e), with a $← R, and s, e $← S(R, t) two t-sparse elements of
the set of boolean functions. There exists a very natural bias: since s and e are sparse, their constant
term is very likely to be non-zero, and therefore, with high probability s(0) = e(0) = 0. Since
there is no constant in X2 −X , the multiplication and the evaluation in 0 commute, and therefore
(as+ e)(0) = a(0)s(0) + e(0) which is 0 with high probability.

5.4.3.2 A Possible Solution

Taking a step back, what causes the bias here is the fact that a random monomial chosen among all
the possible monomials is unlikely to be of small degree, moreover 0. An idea in order to thwart this
problem would be to consider other noise distributions when sampling the error vectors. Indeed, if we
force the sparse vector e ∈ S(R, t) to have a constant number of monomials of each degree exactly,
the previous attacks would not work: we can increase the probability that a constant coefficient
appears in e, to be close to 1/2. Then the sparse elements would not be biased toward 0 when
evaluated in 0. When looking at the vector representation of such an error vector, a structure of
variable density appears, as the number of monomials grows with the degrees at first, and then
decreases again. Obviously, such a construction would request a tailored proof of syndrome decoding
in the case the noise follows a variable density shape. This is similar to what will be done in Chapter 7,
where we consider the Variable Density Syndrome Decoding VDLPN assumption. This question is
still open but is a very exciting line of work to delve into.
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5.5 Further Optimizations for the QA-SD Construction
In this section, we present different optimizations that allow the PCG based on QA-SD to be

really efficient, and thus the construction to be usable in practice.

5.5.1 High-level Idea for Fast Operations inR = Fq[G]

Going back to the construction described in Section 5.3, at the end of Figure 5.3.1, the parties
obtain one OLE overR. Recall that (xσ, zσ) are the output of party σ.

5.5.1.1 Fast Operations

A requirement for the ringR to be appropriate is to have fast operations. The question is then,
for x, y ∈ R = Fq[G] ≃ Fq[X1, . . . , Xn]/(X

q−1
1 − 1, . . . , Xq−1

n − 1), is x · y fast to compute? The
existence of the isomorphism betweenR and (Fq)

n motivates us to seek for a Fast Fourier Transform
(FFT). This is what was done in the caseR = Fq[X]/(P (X)). The goal is to transform the elements
ofR in elements of (Fq)

T , where T = (q − 1)n,compute the equivalent of the multiplication with
the two elements in (Fq)

T , and then by using the inverse isomorphism, recover the result of the
multiplication inR.

5.5.1.2 Fast Evaluations

Recall that in Theorem 5.3.2, we proved that it was possible to obtain a PCG for a single OLE
over R = Fq[G]. Further, we obtain a PCG for OLEs over Fq by using the Chinese isomorphism
between Fq[G] and FT

q , where T = (q − 1)n. Given x ∈ Fq[G], the isomorphism returns the
full evaluation of x seen as a polynomial over the full domain except zero. That is to say, from
(xσ, zσ) ∈ R ≃ Fq[X1, . . . , Xn]/(X

q−1
1 − 1, . . . , Xq−1

n − 1) given by Figure 5.3.1, we want to
evaluate both of them over (F×q )n. Therefore, we want this fast evaluation algorithm, both for the
FFT and for the final evaluation in order to obtain the numerous OLEs over Fq .

5.5.1.3 Working Directly with the Evaluations

To sum up, on one side our multiplications in the group algebra require the FFT to be fast,
first in a multi-evaluation form, and then in the interpolation form. On the other side, what
we desire as an output of the protocol is the evaluations of the polynomials xσ, zσ . That being
said, a natural optimization is to work directly with the evaluations. For f ∈ R, let Evaln(f) =(
f(x1, . . . , xn) | (x1, . . . , xn) ∈ (F×q )n

)
be the list of all the possible evaluations. The evaluation iso-

morphism betweenR and (Fq)
T is a ring isomorphism such that Evaln(x · y) = Evaln(x)⊙Evaln(y)

where ⊙ denotes the component-wise or Schur product. In what follows we show how we can
avoid the intermediate steps of the multi-evaluation-then-interpolation. Instead of constructing
polynomials xσ, zσ , we focus on constructing directly their polynomial evaluations.

Instead of giving the parties the description of the coefficients of the polynomials ai ∈ a, we
can give them the vectors of all the evaluations of all the polynomials, i.e., giving them Evaln(ai),
for all 1 ⩽ i ⩽ c − 1. Because we can write xσ = e0σ + e1σa1 + · · · + ec−1σ ac−1, it follows that
all the evaluations of xσ can be obtained from Evaln(e

i
σ) and Evaln(ai). As a result, computing

Evaln(xσ) amounts to compute Evaln(e
i
σ). For the computation of the evaluation of sparse elements

(eiσ)0⩽i⩽c−1, we will use an FFT algorithm explained in the next subsection. We consider also taking
advantage of the sparsity of eiσ , because intuitively there are less evaluation to perform, nevertheless
the FFT remains counterintuitively better, when just doing a straightforward full evaluation. More
refined strategies might exist.
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The computation of Evaln(zσ) is a little trickier. As mentioned above, x0 · x1 can be seen as
a function of degree 2 in e0, e1, and therefore a function of degree 1 in (e0 ⊗ e1), with constant
coefficients depending solely on a⊗a. Because Evaln(ai), 0 ⩽ i ⩽ c−1 is already given to the parties,
the computation of the coefficients from a⊗a can be obtained using only c2 multiplications. It remains
to compute the evaluations of the additive shares of the polynomials (ei0 · e

j
1)0⩽i,j⩽c−1. There are c2

such polynomials shared among the players, and we can view each share as a random polynomial.
Therefore, each player has to compute the full evaluation of c2 pseudorandom polynomials. Once
again, we will use FFT in this case, and it is explained next subsection. In Figure 5.4 we represent the
PCG framework tailored to our setting, in the specific case q = 4.

5.5.2 Fast Evaluation over Fq
Given a polynomial P with n variables, the parties want to compute Evaln(P ), that is, to evaluate

P over
(
F×q
)n where F×q is the field of q elements without 0. Here, we adapt the standard divide-

and-conquer style algorithm (see for example the seminal work of [CT65]) to our case. Remark
that

P (X1, . . . , Xn) =

q−2∑
i=0

Xi
nPi(X1, . . . , Xn−1).

Instead of classically dividing our problem into 2 sub-problems, we divide it into q − 1 sub-problems.
This is a q-ary generalization of a standard FFT algorithm adapted to our case. Then:

Evaln(P ) =


(q−1)n−1∑

k=0

xiEvaln−1(Pi)[k] | 0 ⩽ i ⩽ q − 2, x ∈ F×q


Denote by C(Evaln(P )) the number of operations carried out to obtain all the (q−1)n evaluations

on the set F×q . Then we have C(Evaln(P )) = (q − 1)C(Evaln−1(P )) + (q − 1) · (q − 1)n−1, which
leads us to C(Evaln(P )) = n ·(q−1)n. This quick back-of-the-envelope calculation gives an estimate
of the asymptotic complexity. A more careful count would focus on the cost of the distinct operations
implemented in practice. Section 5.6 offers a more involved analysis of the evaluation algorithm in
the precise case of q = 4, as done in [BBCC+24].

5.5.3 Regular Syndrome Decoding Optimization

Another common optimization comes from the FSS part. While we present this optimization in
the case of QA-SD, withR = Fq[G], it was also used forR = Fq[X]/(P (X)) in [BCGI+20b]. The
optimization requires that the number of errors in each subvector t divides the number T = (q− 1)n.
Let G be an abelian group of size n. We view the elements of Fq[G] in their vector representation,
given by the isomorphism betweenFq[G] andFT

q . Since the first work on PCGs ([BCGI18; BCGI+19a]),
it has been noted that in order to efficiently share a sparse vector of weight t, one could use regular
sparse vectors.

Let e1, e2 ∈ S(FT
q , t), representing two sparse elements in Fq[G]. We denote by e the vector

corresponding to the product of those two elements. As stated in Proposition 5.4.2, e is a vector
with at most t2 non-zero elements. Recall from Definition 2.5.10 that, given a t2-sparse vector
e ∈ S(FT

q , t
2), and an FSS scheme for point functions, one can decompose e as a sum of t2 unit

vectors, and call the DPF protocol on each one of them. As a result, players obtain t2 sharing of unit
elements, and thanks to the linearity of additive sharing, deduce a sharing of e. This construction



5.5 Further Optimizations for the QA-SD Construction 81

Specific construction of QA-SDOLE for FOLEAGE

Parameters: Noise weight t = t(λ), compression factor c, ring R = F4[X1, . . . , Xn]/(X
3
1 −

1, . . . , X3
n − 1). A SPFSS scheme SPFSS = (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point

functions, with domain [0 . . . 3n) and range F4.

Public Input: c− 1 vectors of length 3n over F4, corresponding to the result of Evaln(ai), for
a1, . . . , ac−1 ∈ R, therefore the full evaluation of the c elements ai.

PCG.Gen(1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: Sample random pi
σ

$← {(piσ,1, . . . , piσ,t) | piσ,j ∈ {0, 1, 2}n}, and vi
σ

$← (F×4 )t.
▷ Each pair (pi

σ,v
i
σ) represent a sparse element ofR.

▷ pi
σ[j] is the power of a monomial, and vi

σ[jm] the associated coefficient.
▷ [Optimization]: pi

σ can be sampled from regular noise distribution. See Section 5.5.3.
2: foreach i, j ∈ [0 . . . c):

2.1: Sample FSS keys (Ki,j
0 ,Ki,j

1 )
$← SPFSS.Gen(1λ, 1n,pi

0 ⊞ pj
1,v

i
0 ⊗ vj

1).
▷ If using regular noise as an optimization, then
▷ SPFSS is for the sum of t point functions with domain [0, . . . , 3n/t).

3: Let kσ = ((Ki,j
σ )i,j∈[0...c), (p

i
σ,v

i
σ)i∈[0...c)).

4: Output (k0, k1).

PCG.Expand(σ, kσ):
1: Parse kσ as ((Ki,j

σ )i,j∈[0...c), (p
i
σ,v

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c),
2.1: Define over F4 the polynomial:

eiσ(X) =
∑

j∈[0...t)

vi
σ[j] ·X

pi
σ [j]

2.2: Compute Evaln(e
i
σ).

3: From Evaln(e
i
σ) and Evaln(ai), compute Evaln(xσ).

4: foreach i, j ∈ [0 . . . c),
5.1: Compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j

σ ) and view it as a c2 vector of element inR.
5: foreach j ∈ [0 . . . c2),

6.1: Compute Evaln(uσ,j).
6: Compute Evaln(zσ), with zσ = ⟨a⊗ a,uσ⟩, for a = (1, a1, . . . , ac−1)

⊺,uσ = (uσ,i+cj)i,j .
7: Output (Evaln(xσ),Evaln(zσ)).

Figure 5.4 – QA-SD-based PCG for OLE overR from evaluations of functions.



82 PCG for OLE correlations constructions

leads to a key size in O(t2 · (log(n)λ + log(q))) and the number of operations of the full domain
evaluation is dominated by t2n group operations and evaluations of a PRG.

Consider now vectors e1, e2 ∈ FT
q , such that both vectors can be written as (u1// · · · //ut) where

ui denotes a unit vector of size n/t and || denotes the vertical concatenation. We say that e1 and e2
are blockwise regular(see Definition 2.4.8). Let e ∈ S(FT

q , t
2) be the vector representing the product

of e1e2. Write e = (e(1)// · · · //e(t)). Now we want to show that for all i, e(i) contains at most t
non-zero coordinates. To see this, we will name the different blocks B0, . . . , Bt−1 each one being
of size (q − 1)n/t. We denote by Xp := Xp1

1 ·X
p2
2 · · ·X

pn
n . We can use the lexicographic ordering

on the monomials, and because t = (q − 1)k for some k (t divides T ), a block Bi correspond to all
monomials Xp, such that the first k coordinates of p represent the (q − 1)-nary decomposition of
the integer i (over k q-bits).

In the case of q = 4 that we will use in the next section, for n = 4 and t = 9, the 34 = 81
monomials are split into 9 blocks B0, . . . , B8 of size 9, and a monomial Xp lies in B6 in and only
if p is of the form (2, 0, ⋆, ⋆) with ⋆ ∈ {0, 1, 2}, where [2∥0] is the ternary decomposition of the
integer 6.

Now, consider i ∈ {0, . . . , (q−1)k−1}, and let Xp be a monomial appearing in e with a nonzero
coefficient. In particular, the k entries of p can be parsed as a q− 1-ary decomposition of i, which we
denote by [i]q−1. It is clear that Xp is of the form Xp0+p1 where p0 (resp. p1) identifies one of the t
nonzero monomials in e0 (resp. e1), and the sum is taken modulo q−1 component-wise. In particular,
there are at most t2 such monomials, and for each nonzero monomial in e1 contributing to Xp of e0,
the first k entries [i0]q−1, there corresponds at most one nonzero monomial in e1 contributing to
Xp, namely Xp−p0 . 4 In other words, the monomial Xp can be produced by at most t possible pairs
of monomials (Xp0 ,Xp1), whose first k entries are ([i0]q−1, [i]q−1 − [i0]q−1), with i0 ranging over
{0, . . . , t− 1}.

Example. Let n = 3 and t = 3. Set e0 := X2
3 + X1X2X3 + X2

1 (which corresponds to posi-
tions (0, 0, 2), (1, 1, 1), and (2, 0, 0)) and e1 := 1 + X1 + X2

1 (which corresponds to positions
(0, 0, 0), (1, 0, 0), and (2, 0, 0)). Then,

e0 · e1 = (1 +X2
3 +X2X3)︸ ︷︷ ︸
∈B0

+(X1 +X1X
2
3 +X1X2X3)︸ ︷︷ ︸
∈B1

+(X2
1 +X2

1X
2
3 +X2

1X2X3)︸ ︷︷ ︸
∈B2

.

Now, in order to obtain an additive sharing of the vector e, one can directly perform the DPF
protocol on the e(i) directly, each of length n/t, shaving a factor t to obtain seeds of size O(t ·
(log(n)λ+ log q)), and computation costs dominated by tn group operations and evaluations to a
PRG. We call this noise distribution a regular noise distribution as it forces the non-zero coordinates
of e to be distributed with a pattern, and call r- QA-SD or more generally r-R-SD the associated
regular Quasi-Abelian Syndrome Decoding assumption, or the regular Syndrome Decoding over a
Ring.

Obviously, such a distribution has to be handled with caution. In [BCGI+20b], the authors provide
proof that the Ring Syndrome Decoding assumption was secure against a large class of attacks in the
regular case. The proof of the resistance of QA-SD against linear tests is in fact true for a very large
group of distribution among which the regular distribution. Additionally, we conduct a thorough
cryptanalysis of the QA-SD assumption in Chapter 7, where the regularity is of course taken into
account.

4. Note that the corresponding monomial Xp1 might not appear in e1.
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5.6 FOLEAGE: A Full Framework
In this section we give an analysis of a full PCG for OLEs construction, FOLEAGE, following

[BBCC+24]. This construction beats the state of the art in producing OLEs. We will give a high-level
description of the full framework, and succinctly precise the different techniques used. For more
details, we refer to the full article, available on eprint [BBCC+24].

5.6.1 High-level Description of FOLEAGE

As we previously stated, the PCG produced via the use of a Group Algebra falls short of construct-
ing numerous OLEs over F2, the unique missing stone of the framework. On the other hand, all the
q ⩾ 3 are suitable via this method. The motivation for this work was the following result: we show
that using this programmable PCG for generating OLEs over F4, we can construct multiplication
triples over F2. The cost of this transformation is only a single bit of communication per triple and
per party in the preprocessing phase.

In order to obtain the best possible scheme from top to bottom, we optimized different parts
of the constructions tailored for q = 4. First, we constructed an FSS scheme designed for q = 4,
by improving the seed distribution algorithm, by using a ternary DPF. Second, we took advantage
of having reduced q to use the standard early termination technique that was already pointed out
by [BGI16]. Finally we used the FFT algorithm sketched in Section 5.5.2 and discussed different
implementations, and described a simple way to execute all the c2 evaluations in parallel.

Additionally, an involved cryptanalysis of the QA-SD assumption was done, and this is the
object of Chapter 6. In short, we have shown new ways to perform the cryptanalysis of the QA-SD
assumption that were overlooked in [BBCC+24], and proved that our initial set of parameters achieved
only 118 bits of security (for a target security of 128 bits).

5.6.2 Using OLE over F4

What follows is the technique that allows to go from multiplication triples over F4 to multiplica-
tion triples over F2. Remember that players can easily obtain multiplication triples over F4 using
their OLEs over F4 given by the PCG (see Lemma 2.5.3). Once converted into F2-triples, these triples
can be used within standard GMW protocol in the standard way described in Section 2.5.4.1.

Let ([[a]]4, [[b]]4, [[ab]]4) be a Beaver triple over F4. Writing x = x(0) + θ · x(1) for any x ∈ F4,
with θ a root of the polynomial X2 +X + 1 (hence θ2 = θ + 1), we have

a · b =a(0)b(0) + a(1)b(1) + θ · (a(0)b(1) + a(1)b(0) + a(1)b(1))

=⇒ (ab)(0) = a(0)b(0) + a(1)b(1).

The parties can reconstruct b(1) at the cost of sending a single bit of communication per party
from their share [[b]]4 = [[b(0)]]2 + θ · [[b(1)]]2. With the knowledge of b(1) the parties can locally
compute shares of a(0)b(0) as follows:

[[a(0)b(0)]]2 = [[ab]]4(0) + b(1) · [[a]]4(1).

We let all parties set their multiplication triple over F2 to be ([[a(0)]]2, [[b(0)]]2, [[ab]]4(0) + b(1) ·
[[a]]4(1)). Note that the only communication consists of reconstructing b(1). As neither a(0), b(0) is
related to b(1), the reconstruction does not harm security.

Here we obtain an enhanced protocol in the preprocessing model: the parties run the PCG to be
given the OLE over F4, locally obtain their multiplication triples over F4, and then broadcast one bit
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per gate. They then obtain multiplication triples over F2, and can finish by using the standard GMW
protocol (see Section 2.5.4).

5.6.3 Ternary DPFs for Enhanced Seed Distributions

An important improvement concerns the seed distribution algorithm, and more exactly the DPF
algorithm (see Definition 2.5.9). The DPF seed distribution algorithm is constructed based on the
Doerner-shelat protocol [Ds17], which requires the parties to hold binary shares of the non-zero
positions in the noise. The idea behind this optimization is to get this first step for free. Remark that
over F4[G] = F4[X1, . . . , Xn]/(X

3
1−1, . . . , X3

n−1) a monomial can be written as Xk :=
∏n

i=1X
ki
i ,

where k = (k1, . . . , kn) ∈ (Z3)
n. In other words, we can express the position of a coefficient ck

as k. Now, observe that given two monomials m0 = Xk0 ,m1 = Xk1 , it appears immediately that
m0 · m1 = Xk0+k1 mod 3. This remark is not without significance, as it means that the parties
holding e0, e1 respectively have already a sharing of the non-zero positions in the noise. There is still
a problem though, as a careful reader would have noticed that the sharing of the position we obtain
is over Z3, whereas Doerner-shelat requests it in its binary form. In order to take advantage of this
trick, we developed a generalized version of Doerner-shelat using shares over F3 of the non-zero
positions as a basis.

We give a high-level idea of this new construction of Doerner-shelat, more detail can be found
in [BBCC+24, Section 5]. Doerner-shelat algorithm classically uses a PRG G : {0, 1}λ → {0, 1}2λ,
constructing a binary-tree. Because our path is given modulo 3, what we want is to generalize
this notion with a ternary tree. Given a node, its three children are this time computed using a
length-tripling PRG G : {0, 1}λ → {0, 1}3λ on the node value. This requires adapting the standard
DPF construction (see [BGI15; BGI16]), and to do again the proof of security.

With this new construction of Doerner-shelat, the path to a leaf is given exactly by the leaf
position written as an Z3-vector. In essence, the new construction requires 3 corrections words
instead of 1 in the binary case, as well as two 1-out-of-3 OTs instead of one 1-out-of-2 OT, for each
level of the tree. This entails small drawbacks. The correction words increase the seed size by a factor
of 1.5, and the change of oblivious transfers costs also a little in communication and computations
(2(ct)2 log3(D/t) 1-out-of-3 OTs of 3λ-bit strings instead of 2(ct)2 log2(D/t) 1-out-of-2 OTs of
2λ-bit strings). On the other hand, the optimization completely removes of the additional step which
consist giving the parties a share of the nonzero positions, saving a cost of 2(ct)2 · log(D/t) oblivious
transfers in log(D/t) rounds (i.e., half of the total number of rounds and OTs). Because the number
of PRG evaluations one performs when evaluating a ternary tree is smaller than when evaluating a
binary tree, expanding the PCG seeds also becomes 20% faster. In addition, because the tree is ternary,
it is also shorter, and therefore the number of rounds in the protocol in this modified Doerner-shelat
protocol is reduced (from log2(D/t) to log3(D/t)).

5.6.4 Early Termination

Another optimization concerns the evaluation by the players of their SPFSS shares. Indeed, note
that the construction of the DPF via the GGM tree (see Section 2.5.3.5) produces leaves of the size
of the security parameter λ = 128 bits (security parameter of the PRG used for the GGM tree). In
[BGI16] the authors point out that in the case of small output group, early termination can be used.
This is exactly the use case we are in, as we want each single leaf to encode a value in F4. Currently,
the size of the leaf is therefore too big compared to the size of the element we want to represent. If
we use the standard protocol without optimizations, we would be using the 128 bits of the leaf to
represent just one element of F4 spoiling at the same time 128 − 2 = 126 bits. Early termination



5.6 FOLEAGE: A Full Framework 85

simply entails truncating the tree 6 levels earlier and setting the value of the new 128-bit leaf on the
special path to encode a unit vector consisting of zeroes except on the exact 2 bits where it equals to
the correct value of F4 element. This essentially boils down to “hard-coding” the end of the path
directly into the leaf, as illustrated in Figure 5.5. This means that the computational costs of the
SPFSS evaluations is divided by 64 = 26, since we stop 6 levels earlier. In addition, we also reduce
the communication costs.

This simple trick was known for some time and already used in Private Information Retrieval
(PIR), for example in [BGI16]. Nevertheless, it is the first time that one can apply it to PCG: prior PCG
constructions were always built over large fields, and therefore this optimization was not possible. It
is thanks to our first work ([BCCD23]) that the trick reappears in this context. The same limitations
arise in the silent OT extension protocols [BCGI+19b; BCGI+19a; CRR21; BCGI+22; RRT23], which
are also limited by the DPF evaluations. Indeed, this optimization could not be applied, because the
DPF is used to output “authenticated” shares of a (potentially small) field element with a (large)
MAC, which requires the leaves to encode 128 bits output values.

Real tree generated

Virtual trees hard-
coded in the
leaves

Figure 5.5 – Early termination example in the case we truncate only two steps earlier. Solid black
nodes represent “zero” leaves, whereas solid red leaves can take on any value.

5.6.5 Concrete Evaluation of the Polynomials with FFT

In this section, we show how to implement concretely the FFT in our case q = 4. Once again,
we represent an element of F4 by its natural canonical representation using 2 bits: given x ∈ F4,
we write x(0) and x(1) to denote the two F2 coefficients of x, with x = x(0) + θ · x(1). Given a
machine word of 64 bits, we represent a vector of size 32 over F4, such that the even indexed bits
are high order and the odd indexed bits are low order. This is illustrated in Figure 5.6.

As shown in Section 5.5.2, we can compute the evaluations via a simple recursive algorithm.
It is displayed in Figure 5.7. We have also considered a non-recursive approach, but it does not
yield substantial gain and therefore the main construction presented in FOLEAGE uses the recursive
algorithm, which has the advantage of keeping everything simple.

Packed representation of F4 elements

Figure 5.6 – Representation of a vector of F4 elements. Red blocks represent the high-order bits
while the blue blocks represent low-order bits.
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Fast-Evaluation algorithm

Parameters: n > 0 an integer, P ∈ F3[X1, . . . , Xn]/(X
3
1 − 1, · · · , X3

n − 1), a polynomial with
n variables.
FastEval(n, P ):
1: if n = 1 then

1.1: return {P (1), P (θ), P (θ + 1)}
2: else

2.1: Write P (X1, . . . , Xn) = P0(X1, . . . , Xn−1) + XnP1(X1, . . . , Xn−1) +
X2

nP2(X1, . . . , Xn−1).
2.2: S ← ∅
2.3: ∀i ∈ {0, 1, 2}, Si ← FastEval(n− 1, Pi)

2.4: foreach i ∈ [|S0|]:
2.4.1: fj(X) := S0[j] + S1[j]X + S2[j]X

2.
2.4.2: S ← S ∪ {fj(1), fj(θ), fj(θ + 1)}

2.5: return S

Figure 5.7 – Fast evaluation of a polynomial in n variables.

5.6.5.1 Concrete Cost of the Computation

At each step in the algorithm of Figure 5.7, we evaluate a polynomial of degree 2, with coefficients
in F4, over the values {1, θ, θ + 1}. For a polynomial f(X) = a+ bXi + cX2

i ,

— in the case Xi = 1, then the evaluation of the polynomial becomes a+ b+ c.
— in the case Xi = θ, the evaluation becomes (a+ c) + θ · (b+ c).
— in the case Xi = θ + 1, the evaluation becomes (a+ b) + θ · (b+ c).

Because we want anyway to compute all the evaluations, it is natural to reuse the different
common intermediate calculations. The three different evaluations can therefore be obtained via the
following steps:

1. compute a+ b, a+ c, b+ c.
2. compute θ · (b+ c).
3. compute a+ b+ c.
4. compute (a+ c) + θ · (b+ c)), and (a+ b) + θ · (b+ c)).

for a total of 12 classical bit-by-bit XOR over F2, and a multiplication by θ (which is nothing more
than the shift on the right).

5.6.5.2 Taking Advantage of Vectorization

Today’s processors offer XOR operations for machine words of size 64 bits. Remember that, in
our representation, we pack 32 elements of F4 in a single machine word. Therefore, this general
XOR operation offers us high parallelization power. A way to use it is to perform multiple FFTs



5.6 FOLEAGE: A Full Framework 87

in parallel. Concretely, we can therefore perform up to 32 FFTs in parallel, as each machine word
contains a single coefficient of the same monomial for each of the c2 polynomials we want to evaluate.
Assuming that c2 is smaller than 32, results in a reduction of computational complexity by a factor
of c2, without any drawbacks. 5

Therefore, the cost of the evaluation of a single polynomial being of 16n · 3n−1 XOR operations,
this optimization reduces the overall cost of obtaining the full evaluation of the c2 polynomials to be
16
⌈
c2/64

⌉
n · 3n−1.

5.6.6 Performances

We then present the performances of FOLEAGE, as presented in [BBCC+24]. The choice of
parameters comes from an involved cryptanalysis that can be found in Chapter 6, and more especially
the script discussed in Section 6.3. We also provide a script giving the parameters we should use
to guarantee security 6. We also implemented an open-source prototype of the PCG construction
in C, the open-source code of the benchmarks is available online 7. We display thereafter a table
comparing FOLEAGE to the state of the art, taken directly from [BBCC+24, Section 1]. Refer to
[BBCC+24, Section 7] for more information on the implementation.

Communication localhost LAN WAN
Multi-party setting (N = 10)

SoftSpoken (k = 2) 134 GB 342s 1192s 12207s
SoftSpoken (k = 4) 67 GB 405s 596s 6104s
SoftSpoken (k = 8) 34 GB 1900s 1900s 3052s

∗298s
RRT 6.3 GB 2619s 2619s 2619s

∗50.3s ∗515s
FOLEAGE 0.7 GB 1463s 1463s 1463s

∗5.6s ∗57.9s

Two-party setting (N = 2)

SoftSpoken (k = 2) 15 GB 38s 119s 1221s
SoftSpoken (k = 4) 7.5 GB 45s 60s 610s
SoftSpoken (k = 8) 3.7 GB 211s 211s 211s
RRT 258 KB 292s 292s 292s
FOLEAGE 33.5 MB 81s 81s 81s

Table 5.1 – Comparison of state-of-the-art protocols to generate N -party Beaver triples over F2 for
N = 10 and N = 2 parties.

The localhost column reports the runtimes (ignoring communication) for generating 109

triples. All protocols run on one core of AWS c5.metal (3.4GHz CPU); all runtimes averaged
across ten trials. “Communication” denotes the number of bits communicated per party for 109

5. In practice, using larger machine words has an impact by increasing stack usage, but this is only observed when
performing an FFT over very large polynomials.

6. https://github.com/mbombar/estimator_folding
7. https://github.com/sachaservan/FOLEAGE-PCG

https://github.com/mbombar/estimator_folding
https://github.com/sachaservan/FOLEAGE-PCG
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triples. LAN and WAN refer to the theoretical time required to generate 109 triples over a 1 Gbps and
100 Mbps network respectively, with respective delays 1ms and 40ms. Numbers in bold red indicate
that the bottleneck cost is the local computation. The star ∗ indicates the maximum theoretical
throughput with more computational power (e.g., using multiple cores). Since each party computes
2 · (N − 1) expansions for the PCG in parallel for an N -party Beaver triple, the running time is
divided by C when using C cores whenever C ⩽ 2 · (N − 1).



Chapter 6
Cryptanalysis of the QA-SD assumption

Conjecture 5.4.1 attempted to establish the security of the QA-SD assumption against linear
tests, which encompass the majority of effective attacks against SD-like assumptions. Further
cryptanalysis is needed, first because the conjecture is not fully proved, second because the security
parameters given by the conjecture would not be optimal. To achieve an efficient construction, it is a
standard practice to select security parameters so that the best known attacks fail. In this chapter,
we describe all the different tools that an adversary can use to attack the QA-SD constructions. We
describe a strategy that attempts to exploit all structures present in the QA-SD construction and
identify the parameters that offer security in the special case q = 4. This is based on the following
work [BBCC+24, Section 6], co-authored with Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain
Couvreur, and Sacha Servan-Schreiber.
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For a better understanding of the content of this chapter, we invite the reader to have a look at
Section 2.4.3, where the QA-SD assumption is described, in addition to the necessary knowledge
on group algebra. Refer to Section 5.4.2 for more information on the context in which we use this
assumption. Additionally, please refer to Appendix C for attacks on generic syndrome decoding.

6.1 Generalities
We recall the problem at hand. Let us consider the QA-SD(c, t,G) assumption, which asks

to distinguish ((a1, . . . , ac−1), s := e0 + a1e1 + · · · + acec) from the uniform distribution over
Fq[G]c × Fq[G], where ai $← Fq[G], and ei $← S(Fq[G], t) (t-sparse elements of Fq[G]). As already
mentioned in Conjecture 5.4.1, the attack version can be represented as finding the vector e in the
following equation:

(
I Ma1 . . . Mac−1

) e0
...

ec−1

 = s, (6.1)

where Mai is the matrix representation of the multiplication by the element ai with respect to the
basis given by G, for some arbitrary ordering of G, and ei are sparse vectors of Hamming weight t.
In the following, we explore the best attacks to solve the search variant.

6.1.1 Generic Attacks on SD

First, note that we can apply the well-known attacks against SD, because an instance of QA-SD is
just a specific case of SD. The best classical attacks against SD were already mentioned in Chapter 4:
Information Set Decoding Attacks (ISD) and Dual attacks (or Statistical Attacks). Appendix B presents
a concrete analysis of the ISD algorithms. The most recent ISD algorithms (starting from [MO15b])
are not considered: although they achieve good asymptotic results, they suffer from prohibitive
constants and are impractical for our range of parameters.

Dual attacks are a new alternative to ISD, introduced in [Jab01; Ove06b]. Further optimizations
have been explored [DT17b; CDMT22a; MT23; CDMT24]. Although ISD techniques have been
considered the best for solving the decoding problem, in some specific regimes dual attacks achieve
better results. However, these improvements apply only for a rate below 1/2 [CDMT24, Figure 1].
As we are working with a high code rate of 1 − 1/c (remember that the parity-check matrix is a
|G| × c · |G| matrix), we decided to not take these attacks into account. For the same reason, we do
not take into account generic attacks on LPN such as the ones of BKW [BKW03] or Arora-Ge[AG11].

6.1.2 Possible Leverages

Nevertheless, the QA-SD construction, especially in the use case we consider, is far from generic,
and many optimizations can be applied. Here we present the different advantage an adversary can
use.

6.1.2.1 A (c, t)-blockwise regularity

First, note that in the description of Equation (6.1), the noise e := (e⊺0, . . . , e
⊺
c−1)

⊺ is (c, t)-
blockwise-regular 1, with exactly t non-zero coordinates in each subvector ej , 0 ⩽ j ⩽ c − 1.

1. see Definition 2.4.8
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This kind of regularity has been gaining increasing attention since its use in the NIST submission
SDitH [AFGG+23] (in the case of unstructured codes). We use the following result by [FJR22].

Theorem 6.1.1 ([FJR22, Theorem 1]). Let n, k, t be positive integers such that n > k, n > ct, and c
divides n. If there is an algorithm solving a random instance of the (c, t)-blockwise regular decoding
problem with code length n, dimension k and ct errors, in time T and with probability εc, then there
exists an algorithm which solves a random instance of the standard decoding problem with the same
parameters, in time T , and with probability ε1 with

ε1 ⩾ α · εc α :=

(
n/c
t

)c(
n
ct

) < 1

To fully understand how we can use the theorem, let T1 = T/ε1 and Tc = T/εc. T1 and Tc are
respectively the attack expected time in the standard case and in the (c, t)-blockwise regular case.
The theorem states that T1 × α ⩽ Tc. We can see this inequality as a lower bound on the time
it takes to solve the (c, t)-blockwise regular variant. Even if the bound seems really conservative,
the c-regular variant is a new assumption that has not received deep and thoughtful analysis from
the community. Therefore, we will be cautious when choosing our parameters and assume every
time that Tc = T1α. This allows us to estimate the cost by using a generic ISD technique and then
applying the (c, t)-regular penalty by multiplying by α.

6.1.2.2 Exploiting the Algebraic Structure: The DOOM Strategy and Folding At-
tacks

The adversary can also exploit the quasi-abelian structure of the code via the Decoding One out
Of Many (DOOM) strategy. This strategy, from [Sen11], explains how an adversary can speed up
the attack computational time by

√
N given N distinct instances of the decoding problem. Thanks

to the structure our parity-check matrix H, we can obtain a maximum of |G| instances: it suffices to
consider all the mappings x ∈ Fq[G]→ g · x for g ∈ G. A multiplication by an element g induces a
permutation of the basis, which does not change the weight of the error. Therefore from a single
instance we can deduce |G| distinct instances. Using these |G| instances with the DOOM attack
results in a gain of a factor

√
|G|.

Another approach to take advantage of the quasi-abelian structure is to consider folding attacks.
Folding attacks involve reducing the sample modulo some ideal of Fq[G] to obtain a smaller instance
of the decoding problem. When doing this, the instance size is reduced, but the noise level does
not decrease significantly (it depends on the number of possible collisions). If the folded noise rate
(number of errors in the folded error vector divided by the size of the folded code) does not increase
too much, then the attack can offer significant advantages. Folding attacks will be precisely analyzed
in Section 6.2.

6.2 Concrete analysis of the attacks

6.2.1 What is a Folding?

Let H be a subgroup of G. An element of G can be written as ḡ+ h for ḡ ∈ G/H and h ∈ H. We can
induce a natural projection from G→ G/H:
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πH :


Fq[G] −→ Fq[G/H]∑

g∈G
agg 7−→

∑
ḡ∈G/H

(∑
h∈H

ag+h

)
ḡ.

πH is a morphism of algebras. Let us write an element of Fq[G] as a vector of length |G|. It is
composed of |G/H| sub-vectors of size |H| (corresponding to the coefficients of the coset of H). The
projection compresses these vectors by summing up their entries, and as a consequence reduces the
size of the original vector by |H|. The projection is illustrated in Figure 6.1.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x1 + x4 + x7

x2 + x5 + x8

x3 + x6 + x9

πH

x

πH(x)

Figure 6.1 – Example representation of πH for a group G of size 9 and a subgroup H of size 3. Each
coset of H is represented by a different color.

Let y := (y1, . . . , yc) ∈ Fq[G]c. The folding of the vector y with respect to H is defined as
follows: FoldH(y) := (πH(y1), . . . , πH(yc)) ∈ Fq[G/H]c. Let (a, ⟨a, e⟩ + e0) be a QA-SD(c, t,G)
instance. Because πH is morphism of algebras, it follows that

πH

(
e0 +

c−1∑
i=1

aiei

)
= πH(e0) +

c−1∑
i=1

πH(ai)πH(ei) ∈ Fq[G/H].

This defines exactly another syndrome, with the error vector being FoldH(e) and corresponding
parity check matrix

(
πH(I) MπH(a1) . . . MπH(ac−1)

) πH(e0)
...

πH(ec−1)

 . (6.2)
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Therefore, by applying the projection morphism on the syndrome, we obtained a new syndrome of a
folded instance. Let’s analyze the underlying code of the new instance. There are still c different blocks,
and therefore the code is of size c(|G|/|H|), while the dimension of the code is (c− 1)(|G|/|H|). As
a result, the code rate remains equal to 1− 1/c. Thus, the structure is mostly the same but the size
has been reduced by |H|. As for the noise, things are a bit different. The noise retains its c-regular
structure because the folding is applied to each bloc independently. The question that immediately
arises is: what is the weight of the folded error vector? For a given subgroup H, we are summing, for
each ḡ ∈ G/H the coordinates of the elements ḡ + h for each element h ∈ H. Therefore, collisions
are possible, but very rare if the number of errors in the original vector e is small. The weight of
the folded error vector is therefore similar to the original. Still, the overall size of this new QA-SD
instance is smaller than the original one, so the noise rate increases. To obtain a proper bound, it is
important to compute the probability distribution of the weight of the folded vector. This will be
discussed in the Section 6.2.3.

6.2.2 High-Level Description of the Attack

In light of the information given above, we provide a first description of the attack. A natural
attack is to (1) randomly select a subgroup H of G, (2) consider the folded instance associated to
H, (3) use a generic algorithm against SD on the folded (and thus reduced) instance, (4) apply the
penalty coming from the (c, t)-blockwise regularity and the

√
|G|/|H| gain from the DOOM strategy.

Note that we ensure the penalty is applied to the reduced instance.
The choice of the subgroup H will be discussed later. In one word, one must ensure the solution

to the decoding problem remains unique, while also selecting the largest possible H to reduce the
size of the folded instance.

To estimate the time a generic algorithm would take on the folded instance, one must analyze
the folding function and, more precisely, the distribution of the weight of the folded error vector:
the smaller the number of errors, the lower the cost of finding a solution. This analysis also led
to another, more effective attack: the adversary can “bet” that for a certain subgroup H the folded
vector has a very small weight, enabling a very quick resolution via generic decoding. Performing
the decoding algorithm with small noise can be so efficient that it compensates for the loss incurred
from trying many subgroups. Next, we formally introduce the folding function and the distribution
of the weight of a folded error.

6.2.3 Distribution of the Weight of a Folded Vector

We want to compute Pr
e

$← S(Fq [G],t)

[ wH(πH(e)) = u ]. We express the probability by counting

the vectors that satisfy the condition:

Pr
e

$← S(Fq [G],t)

[ wH(πH(e)) = u ] =
AH(t, u)(|G|
t

)
(q − 1)t

,

where

AH(t, u) :=
∣∣∣{e ∈ Fq[G] | wH(e) = t and wH(πH(x)) = u

}∣∣∣.
Let us analyze AH(t, u). Let e ∈ Fq[G] of Hamming weight t and let ℓ := |H|. A coordinate of πH(e)
indexed by a coset ḡ = g0 +H ∈ G/H is zero if and only if the sum of the corresponding entries in
e is zero, meaning the subvector x̃ induced by the g0 + h positions belongs to the [ℓ, ℓ− 1]q-parity



94 Cryptanalysis of the QA-SD assumption

code denoted by Cℓ. The weights of the subvectors define a partition of t into parts of size at most
ℓ: we call this partition the signature of e, and we denote it σ = (σ1, . . . , σ|G|/|H|),

∑
i σi = t. Our

strategy is to count the number of e ∈ Fq[G] with wt (e) = t, wt (FoldH(e)) = u of signature σ, and
summing for all possible signature. Given a signature σ = (σ1, . . . , σ|G|/|H|), and assuming without
loss of generality that only the first u parts of the partition contribute to the weight of the folded
error vector, the total number of such e that satisfy the above condition is given by:

u∏
j=1

θ(σj , ℓ)

|G/H|∏
j=u+1

ν(σj , ℓ),

where ν(ω, ℓ) is the number of codewords of Cℓ of Hamming weight ω and θ(ω, ℓ) is the number of
vectors in Fℓ

q \ Cℓ of Hamming weight ω. Therefore, we can now write:

AH(t, u) =

(
|G/H|
u

) ∑
σ1+···+σ|G/H|=t

0⩽ij⩽ℓ

 u∏
j=1

θ(σj , ℓ)

|G/H|∏
j=u+1

ν(σj , ℓ)

 .

Define Pν,ℓ :=
∑ℓ

ω=0 ν(ω, ℓ)X
ω and Pθ,ℓ :=

∑ℓ
ω=0 θ(ω, ℓ)X

ω . Then the above expression is the
coefficient of Xt in the polynomial

(|G/H|
u

)
P u
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X), which we denote by

[Xt]

((
|G/H|
u

)
P u
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X)

)
.

This is convenient because closed formulas of Pν,ℓ and Pθ,ℓ exist (from a corollary of McWilliams’
identity, [MS86]).

Lemma 6.2.1 ([CT19, Lemma 1]). We have

Pν,ℓ(X) =
1

q

(
(1 + (q − 1)X)ℓ + (q − 1)(1−X)ℓ

)
,

and
Pθ,ℓ(X) =

q − 1

q

(
(1 + (q − 1)X)ℓ − (1−X)ℓ

)
.

Therefore we can conclude:

Proposition 6.2.1. Let 0 ⩽ t ⩽ |G| and 0 ⩽ u ⩽ min(t, |G/H|). When e is uniformly distributed
over the elements of Fq[G] of Hamming weight t, then

Pr
e

$← S(Fq [G],t)

[ wH(πH(e)) = u ] =

(|G/H|
u

)
[Xt]

(
P u
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X)

)
(|G|

t

)
(q − 1)t

.

6.2.4 Formal Analysis of the Attack

With knowledge of the weight distribution of the folded error, we can estimate the cost of our first
attack idea: taking a subgroup H and applying the best ISD algorithm cost on the resulting folded in-
stance. This would cost an average of

∑t
w=0(CostDecoding(ω)+CostFolding)·Pr [ wH(FoldH(x)) = ω ],

where CostDecoding is the complexity of the best decoding algorithm for the target weight ω in the



6.3 Concrete Parameters 95

folded code, and CostFolding is the cost of computing the folding operation, which is actually linear in
c|G|.

Nevertheless, knowing this distribution motivates a more promising attack: start by guessing
the noise weight of the vector, say w0, then pick a random subgroup H and apply the best decoding
algorithm associated with the folded vector. We bound the number of iterations of the decoding
algorithm (since the guess could be wrong) to the number of iterations required to decode w0 errors
using generic algorithms. If no solution is found, it means that the assumption was wrong for the
chosen subgroup H, and one can try another H. Using this attack, an adversary can decode in time
CostDecoding(ω0) + CostFolding
Pr [ wH(FoldH(x)) = ω0 ]

.
Given a particular syndrome x, the adversary would then choose the target weight ω0 to minimize

this ratio and achieve the best complexity.
How to choose H? It is natural to pick H as large as possible, to reduce the size of the instance on

which we perform the generic algorithm. However, we must consider that the noise rate increases
when we fold, as stated above. If the noise rate is too high, the solution to the decoding problem is
not unique anymore. More concretely, recall the Gilbert-Varshamov (GV) bound, which, given a code

of rate R, is defined as δGV = h−1q (1−R) where hq(x) := −x logq
(

x

q − 1

)
− (1− x) logq(1− x)

for x ∈ [0, 1− 1/q], is the q-ary entropy function (see Proposition 2.4.2). A standard result states
that if the noise rate is bellow δGV the uniqueness of the solution is assured with high probability;
otherwise there will be exponentially many solutions (see [Deb23a, Chapter 2]). The problem with
the latter case is that each potential solution to the folded instance must be tested to see if it also
solves the original problem, which is inefficient compared to when the noise rate is below the GV
bound. In the former scenario (noise rate bellow δGV ), the single solution found translates directly
to a solution of the original instance. Therefore, it is preferable to fold until the noise rate reaches
the GV bound, but not further.

6.3 Concrete Parameters
The parameters are chosen to match the FOLEAGE construction. We take G = (Z/3Z)n. The

efficient attack presented above is much more efficient for small values of c, which is why we chose
c = 4 in our setting. This allows us to maintain small parameters while achieving more than 128 bits
of security (while still keeping some security margin). We also provide a script in SageMath [Ste+24]
to compute a set of parameters for a given instance of QA-SD 2. Concretely, given a size and noise
level, the script uses the formulae proven in Section 6.2.3 to compute the weight distribution of the
folded vector, determine the best target noise w0, and then calculate the complexity of the attack.
Results are displayed in Section 6.3. This cryptanalysis revealed that the original parameters of
QA-SD, as presented in [BCCD23] were too optimistic, achieving only 118 bits of security compared
to the intended 128. This script was used to derive the parameters presented in Table 5.1. Note that
in [BCCD23], all the parameters were for q = 3. Here t is the number of errors per block, while in
[BCCD23] it was the total number of errors. nfold and kfold are respectively the length and dimension
of the folded code. Niter is the number of different foldings necessary to run the attack, and ω0 is the
optimal target weight.

2. https://github.com/mbombar/estimator_folding.

https://github.com/mbombar/estimator_folding
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n c t (nfold, kfold, ω0) (Niter,CostDecoding)
Number of
subgroups

Actual
security

25 4 16 (2048, 1536, 54) (214, 289) 2145 118

30 4 16 (2048, 1536, 54) (214, 289) 2190 118

35 4 16 (2048, 1536, 54) (214, 289) 2235 118

Table 6.1 – Re-estimation of the security for the parameters given in [BCCD23].



Chapter 7
A WPRF for PCF constructions

The first PCF construction was proposed in [BCGI+20a]. They explained how to construct a PCF
from a particular WPRF that can be efficiently shared between two parties; we say that the WPRF is
FSS-friendly (see Section 3.2.1). They provided such an FSS-friendly WPRF using a new variant on
Syndrome Decoding, called Variable Density Syndrome Decoding (VDSD). While being an important
first step theoretically, their approach was not intended to be efficient, and their security parameters
were huge (∼ 107). In this chapter, we explain in detail the construction of the VDSD assumption.
We recap the first construction by [BCGI+20a], and point out some errors in their proof, which we
address with corrections. Subsequently, we show how to make VDSD efficient by slightly changing
the underlying assumption and providing a better analysis. This is based on an article published at
PKC2023 [CD23], co-authored with Geoffroy Couteau.
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7.1 State of the Art

A Pseudorandom Correlation Function (PCF) is a highly powerful yet challenging primitive to
construct. It was formally introduced by [BCGI+20a]. A first proof of feasibility can be provided via
heavy primitives using threshold fully-homomorphic encryption [DHRW16; BCGI+20a]. This type
of construction is still limited for efficiency reasons.

To our knowledge, there are two main solutions to construct usable PCFs. The first one was
introduced in [BCGI+20a]: a high-level idea was presented in Section 3.2. It is built using the
combination of two primitives: (1) a Function Secret Sharing (FSS) scheme for functions in a particular
class C (which enables splitting a function f into two additive shares f = f0+ f1, see Section 2.5.3.5),
and (2) a weak pseudorandom function that can be constructed via functions in C (we then say it
is a FSS-friendly WPRF). In practice, the WPRF is built using a variant of the Syndrome Decoding
assumption due to its great compatibility with FSS. Indeed, we can build a weak pseudorandom
function by interpreting the knowledge of n− k different evaluation of the WPRF as a product H · e,
where e is very sparse and H is a special matrix. [BCGI+20a] first proposed this construction with a
matrix composed of different blocks with decreasing density, making it the Variable Density Syndrome
Decoding (VDSD) assumption. Their result was not meant to be efficient: the security parameter
w was fixed to approximately 107, leading to impractical computational and communication costs.
The construction was of more theoretical interest as it could be built in a complexity class as low
as depth-2 AC[⊕] 1. In [CD23], we demonstrated that by tweaking the assumption a bit (and thus
losing the nice complexity class property), the VDSD assumption could, in fact, lead to close-to-
practical PCF constructions (w ≈ 380, resulting in approximately 500 OT/s with key size 3MB,
or even 4000 OT/s for their aggressive parameters). The VDSD assumption will be the focus of
this chapter. Still, the best PCF construction was proposed by [BCGI+22], in which the authors
built over another Syndrome Decoding-like assumption, the expand and accumulate assumption.
This assumption consists to define the parity-check matrix H = BA, where B ∈ Fn×poly(n)·

2 is
a matrix with sparse rows, and A ∈ Fpoly(n)×poly(n)

2 is the accumulator matrix, that is such that
xA = (x1,x1 + x2, . . . ,x1 + · · ·+ xn). Under the assumption that SD holds for this specific class
of matrices, the authors proved that they can build a PCF that achieved state-of-the-art result of
producing about 43k OT/s (3900 PRG evaluations per PCF outputs on a standard laptop) with a key
size of approximately 650kB. Using more aggressive settings they reached ≈ 120kOT/s for key size
370kB.

The second construction technique for PCF originated from decisional composite residuosity,
and was put forward by [OSY21]. The scheme has the significant advantage of using the Paillier-
based construction of homomorphic secret sharing and does not require any new, tailored-made
assumptions but only the composite residuosity assumption. It also boasts the impressive property of
having a public-key setup, which, when done, allows any party to start generating random correlations
without any prior agreement. This is a property that the previous constructions did not possess. Still,
it suffers from several downsides: (1) it is primarily limited to producing OTs, whereas the previous
technique could be used for OLE and Beaver Triples, (2) the Decisional Composite Residuosity
assumption is not post-quantum, whereas SD-like assumptions are supposed to be (even if this
could be a bold assumption given that we are talking about non-standard types of SD), and finally
(3) the efficiency considerations are not as favorable, lagging behind both VDSD and EASD based
constructions by several orders of magnitude (producing around 1 OT/s ). Another approach for
public-key PCF for OT was recently advanced by [BCMP+24], based on the Naor-Reingold PRF. The

1. Functions that can be computed with circuit of depth 2, with AND and general XOR.
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scheme achieves competitive results, even among non-public key PCF, producing about 15k-40k
OT/s on a standard computer with keys of 30kB.

This chapter presents part of the work from [BCGI+20a] and [CD23]. First, Section 7.2 explains
the different challenges that one can encounter when using SD-like assumptions as a way of creating
the FSS-friendly WPRF we need, then explain how Variable Density Syndrome Decoding (VDSD)
offers a nice solution, and finally discusses briefly the proof of security of VDSD, which originally
contained some errors. In Section 7.3, we present a slightly changed VDSD assumption along with a
better analysis coming from [CD23], which makes the VDSD usable in practice. Finally, Section 7.4
broaches some possible future improvements and further work on VDSD.

7.2 Variable Density Syndrome Decoding
For a better understanding of the content of this chapter, we invite the reader to have a look at

Section 3.2, which introduces PCF and their constructions formally, and Chapter 4, as we will use
the linear test framework as a security guarantee. For a better understanding of the motivations
behind PCF, refer to Section 2.5.4.1.

7.2.1 The Search for an FSS-friendlyWPRF: a Challenge

We have shown in Section 3.2 that PCF constructions for different correlations (VOLE, OT,
Beaver Triples) exist, as long as we have access to an FSS-friendly WPRF, that is a WPRF that can
be efficiently additively shared among the parties. Therefore, the search for a PCF construction
boils down to the search for an FSS-friendly WPRF. Remember that known FSS constructions are
pretty limited: we know how to share point functions, and therefore multi-point functions but more
involved functions are for now out of reach. Next, we present iteratively different FSS-friendly WPRF

tentative constructions that do not work, but which will provide some insights on the definition of
VDSD. As for the PCG constructions, we make these WPRFs (and therefore the PCFs they construct)
rely on some particular variant of the Syndrome Decoding assumption.

First, how can we construct a WPRF under the SD assumption? Let F = {fk}k∈{0,1}λ be a
pseudorandom function. Let k $← {0, 1}λ be the secret key associated with the WPRF, with λ being
the security parameter. The adversary is given n different samples of the WPRF, that is , n different
pairs of the form (x(i), fk(x

(i))),as explained in Section 2.3. A natural way to link WPRF to SD is
to define fk(x) := ⟨k,x⟩, that is the inner product between k and x. In that case, the adversary
knows (x(i),

〈
k,x(i)

〉
)1⩽i⩽n. The transformation into an SD instance shape is straightforward. This

is nothing else than giving to the adversary (H,H · e) where we defined H and e as follows:

H =

x
(1)

...
x(n)

 , and e = k.

To sum up, it involves to view each input of the WPRF as a row in a matrix. As for the noise vector,
it is defined as e = k. Therefore, an adversary able to distinguish the output of the WPRF would
be able to distinguish (H,H · e) from (H,y) where y

$← {0, 1}n: he would be able to solve the SD
assumption.

We examine methods to share the WPRF function defined like this. First, we can consider the
noise vector (e = k) dense but small, to be able to share it. Here "dense" means that it has about half
of its entries non-zero and "small" means polynomial in the size of the security parameter λ. The
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noise vector e, being short, could be shared using FSS or even naïvely. However, a problem arises:
the number of queries to the WPRF an adversary can make must be bounded by the size of the noise
vector. Indeed, if the number of queries n is greater than the size of the key, then we would be able to
solve the associated decoding problem using simple Gaussian Elimination techniques. The function
would no longer be a WPRF (H would then be more tall than large). This bound on the number
of queries goes against the spirit of a WPRF (and consequently of the spirit of the PCF): we want
the adversary to be able to request a number of evaluations of the function exponential in the security
parameters λ.

Therefore, we want the noise element in the matrix-vector representation of SD to be exponential
in λ, to match the exponential in λ number of queries we want to give to the adversary. One solution
would be to define the error vector not as equal to the key, but rather as equal to an exponential
expansion of it. Therefore, we introduce the following function Expd : {0, 1}poly(λ) → {0, 1}exp (λ),
which takes a short seed k of size polynomial in the security parameter, and returns a very long
(exponential in λ) but sparse vector. For example, a t-sparse exponential-sized vector can be described
with a t ·poly(λ) vector (each of the t non-zero positions in e can be described with poly(λ) bits). Let
Expd be the function that associates such a small vector to its t-sparse exponential-size equivalent.

k is still polynomial in the security parameter λ, and because Expd simply amounts to evaluating
point functions on their entire domain, it can be efficiently shared via FSS schemes. At the same time,
because the noise vector is now exponential in the security parameter, we can sustain an exponential
number of queries from the adversary.

The WPRF would then be defined as fk(x) = ⟨Expd(k),x⟩. The associated syndrome decoding
can be expressed as:

H :=

x
(1)

...
x(n)

 ,H · Expd(k) ∣∣∣∣∣ k $← Fpoly(λ)
2

 ≈
{
H,y

∣∣ y $← Fn
2

}
.

Still, there is a caveat: in this situation, the computational cost becomes an issue. To compute the
function, the parties (1) use an FSS scheme to share e = e0 + e1, and (2) multiply their respective
eσ by H. However, since the matrix H is exponentially large in λ, the multiplication would entail a
prohibitive squared-exponential cost. Note that if e is sparse, it is not the case of the eσ, σ ∈ {0, 1}
which are dense.

To reduce the number of operations, a solution would be to make the rows of H sparse as well.
To achieve this, we replace the rows of H by Expd(x), for x ∈ {0, 1}poly(λ). The function would then
be defined by fk(x) = ⟨Expd(k), Expd(x)⟩, and the associated SD assumption could be written as:H :=

Expd(x
(1))

...
Expd(x(n))

 ,H · Expd(k) ∣∣∣∣∣ k $← Fpoly(λ)
2

 ≈
{
H,y

∣∣ y $← Fn
2

}
.

This would resolve the problem of the multiplication because each player would multiply their
share eσ by an exponential-but-sparse matrix H. Unfortunately, this approach also fails: in trying to
achieve all these properties, we neglected to ensure that the result is still pseudorandom. This is not the
case here by any means: the inner products of two sparse vectors are likely to be biased toward 0,
and therefore, it is not a WPRF. Next, we show how to navigate around all these constraints and find
a tradeoff between these two non-working cases that achieves security.
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7.2.2 A Solution: Variable Density Syndrome Decoding (a.k.a LPN)

In this subsection, we present a solution on how to design an FSS-friendly WPRF built under an
SD-like assumption. We present the regular VDSD assumption from [BCGI+20a]. Other variants
exist, but we will not delve into the details in this manuscript (see [BCGI+20a, section 6.1]).

Remark 7.2.1 (A note on terminology). [BCGI+20a] introduced the terminology Variable Density
Learning Parity with Noise (VDLPN). We have decided to replace this name with Variable Density Syn-
drome Decoding (VDSD ) because LPN with fixed number of samples and SD are, in fact, equivalent
in this setting and because coding theory is at the core of this thesis (see Remark 2.4.4).

7.2.2.1 VDSD intuition

In the previous subsection, we did not manage to find a proper pair of (matrix, vector) for which
the associated syndrome decoding assumption is secure and provides a useful FSS-friendly WPRF.
Nonetheless, the tentative solutions highlight some of the requirements we desire for our syndrome
decoding assumption, and therefore for H and e:

— We need exponentially many samples, and therefore e shall be exponentially long.
— We have to share the noise; therefore e has to be sparse (it is a consequence of FSS: we only

know how to share sparse vectors).
— To be able to compute the matrix-vector multiplication, we need the matrix H to be sparse.
— However, multiplying a sparse matrix by a sparse vector does not produce pseudorandom

elements.
We can identify two extremes that are computationally-wise acceptable and FSS-friendly: (1) a

case where both the matrix and the error vectors are dense but small, which suffers from a drastic
limitation in the number of calls to the WPRF; (2) a case where both the matrix and the error are
sparse and exponentially long, but for which the WPRF is strongly biased (toward 0). The intuition of
VDSD is to get the best of both worlds. What does this mean regarding attacks? We have shown that
depending on the number of samples requested by the adversary, these two cases can be insecure.
However, note that if the adversary requests an exponential number of evaluations of the WPRF, case
(1) is broken but not case (2). Conversely, if the adversary requests a small number of evaluations
of the WPRF, case (2) can be broken but not case (1). Therefore, it seems that each different pair
(matrix, vector) protects against some attacks if not all.

It is then natural to wonder if a concatenation of a short but dense matrix and a sparse but long
matrix, joined with a short and dense noise concatenated with a sparse and long noise, could resist
attacks: for a given attack, it suffices that only one of the two constituent matrices is resistant to this
attack for the global matrix to be resistant. Note that we are not considering all the attacks in between
these two extremes, that is, those which take advantage of a moderate but not low number of calls
to the WPRF. Therefore, this motivates the idea of taking a matrix composed of D blocks, each
one providing resistance over a particular span, such that for every attack, there will be a block Hi

that resists the attack, ensuring the resistance of the global matrix. More regularity is introduced in
rVDSD, mostly for the sake of proof easiness and scheme simplicity.

7.2.2.2 Formal definition of VDSD

Let λ be a security parameter. We fix three parameters: a sparsity parameter w = w(λ) (control-
ling the number of ones per row of a block), a block parameter D = D(λ) (controlling the number
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of blocks), and a bound n = n(λ) on the number of samples. The reader can think of w,D as being
Ω(λ), with D < w, and n = 2D for concreteness. We set par := (w,D, n).

We will now describe a distribution of matrices and error vectors that will solve our problem.
The matrix H will be described via a succession of distributions: first for the rows of sub-blocks,
then for the sub-blocks, and finally for the matrix classes we are interested in.

Definition 7.2.1. We denote by S1,2i the distribution of unit vectors of size 2i.

The construction is as follows:
— Let Kw,i be the distribution of random w-regular vectors over Fw·2i

2 , i.e., the concatenation of
w vectors sampled from S1,2i .

— Each block of the matrix is then produced by the distribution that we callHi
par over Fn×(w·2i)

2 ,
where each row of the block is sampled independently from Kw,i.

— Consequently, we denote by Hpar the distribution over Fn×2n·w
2 , obtained by sampling the

different blocks Hi
$← Hi

par for i = 1 to D and outputting H = [H1|| · · · ||HD], where ||
denotes the horizontal concatenation. Note that the width of a block double each time i
increases.

— Eventually, we denote by Npar the noise distribution obtained by sampling each block of the
noise ei⊤ according to Rw,i and outputting e← (e1// · · · //eD) ∈ F2n·w

2 where // is this time
the vertical concatenation.

The matrix Hi sampled fromHi
par is:

Hi =

u
i
1,1 · · ·

2i columns︷︸︸︷
ui
1,w

... . . . ...
ui
n,1 · · · ui

n,w

 :=
[
Mi

1, · · · ,Mi
w

]
,

where (ui
k,j)1⩽k⩽n,1⩽j⩽w are sampled from the distribution S1,2i , and are unit vectors over F2i

2 . The
Mi are matrices of size 2n×2

i·w , and are defined by the equation. Thus, there are w non-zero entries
per row. Eventually, the matrix H sampled fromHpar is a horizontal concatenation of the Hi:

H =
[
H1 · · · HD

]︸ ︷︷ ︸
w2̇D+1 columns

.

The term variable density refers to the fact that the density of 1’s in each block Hi is 1/2i by
construction: it decreases exponentially with i. Let H sampled from the distributionHpar, we denote
by Opar(H) the distribution which samples e $← Npar and returns H · e. We display the matrix H in
Figure 7.1.

We can now define VDSD. Not surprisingly, it is again a particular restriction of SD for the
special case of using the distributionHpar and Npar.

Definition 7.2.2 (rVDSD(w,D, n)). The regular Variable Density Syndrome Decoding (rVDSD )
assumption, with parameters par = (w,D, n), denoted rVDSD(w,D, n), states that:{

(H,b) | H $← Hpar, e
$← Npar,b← H · e

}
≈
{
(H,b) | H $← Hpar,b

$← Fn
2

}
.
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H =

2w 4w 8w 2Dw

2D· · ·H1 H2 H3 HD

Row of weight w

Hi = M1 Mw· · ·

Unit vector of F2i
2

Figure 7.1 – Representation of the parity-check matrix used in rVDSD.

7.2.2.3 A WPRF Candidate from the rVDSD Assumption

We show that rVDSD naturally defines an FSS-friendly WPRF. Fix parameters par(λ) =
(w(λ), D(λ), n(λ) = 2D(λ)). Recall that a vector from the distribution Npar is, in fact, the ver-
tical concatenation of D vectors (ei)1⩽i⩽D, where ei is the transpose vector of a vector from the
distribution Kw,i. Moreover, Kw,i is the concatenation of w unit vectors over F2i

2 , where each of
them can be generated with i random bits (encoding the index of the nonzero entry). Therefore,
sampling a vector Npar requires exactly w ·

∑D
i=1 i = w ·D(D − 1)/2 random bits, which is still

polynomial in the security parameter. Let Npar(r) denote the vector e sampled from Npar using
randomness r. Then the WPRF can be constructed as below:

— Key size: k ∈ {0, 1}π(λ) with π(λ) = ρ(λ) = w ·D(D − 1)/2

— Input size : x ∈ {0, 1}ρ(λ) with ρ(λ) = w ·D(D − 1)/2

— Fk(x) : on input x ∈ {0, 1}ρ(λ), sample h⊤ ← Npar(x) and output ⟨h,Npar(k)⟩

Theorem 7.2.1 ([BCGI+20a]). Suppose that rVDSD(par) holds. Then the above construction is an
n-queryWPRF, with input length and key length equal at w ·D(D − 1)/2.

The next subsection will cover exactly how the authors established the security of the rVDSD
assumption. Then, the following section will analyze a slightly different assumption and also prove
its security.
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7.2.3 Original Proof of Security, Errors and Fixing

The security of the PCF boils down to the security of the underlying FSS scheme and WPRF

scheme. [BCGI+20a] introduced the linear attack framework (see Section 4.1) to prove that the WPRF

based on rVDSD is secure against a large class of attacks. Next, we present their attempt to prove
the security of rVDSD against linear tests, highlight some errors in their analysis, and explain how
to fix the mistakes.

7.2.3.1 Overview of the Original Proof of Security

Warning: The following present the main idea of the security proof from [BCGI+20a]. It contains
some errors, that we will repeat here in order to explain the correction. In what follows, two equations
are therefore wrong: Equations (7.1) and (7.2). Nevertheless, the general idea of the proof remains
valid, and we will fix the mistakes.

The goal of this analysis is to show that the rVDSD assumption cannot be broken by any
linear test, which captures, in particular, almost all attacks against SD. We restate Definition 4.2.2
and Equation (4.1) with the exact notation introduced with rVDSD:

Theorem 7.2.2 (Resistance against linear tests). There exist constants (Γ, µ, ν), such that for any
large enough w, any Γ ·D ⩽ w, := 2D, par := (w,D, n), it holds that

Pr
H

$←Hpar

[ bias(Opar(H)) > µw ] ⩽ νw,

where Opar(H) denotes the distribution which samples e
$← Npar and returns H · e. Recall

that this theorem states that with high probability (at least 1 − νw), over the choice of a possible
exponential number (n = 2D) of random inputs (x(1), . . . ,x(n)), a distinguisher that computes a
linear function of the entire output string y = (fk(x

(1)), . . . , fk(x
(n))) has an advantage smaller

than µw to distinguish the string from uniform. Note that the choice of the linear function can
depend arbitrarily on (x(1), . . . ,x(n)).

It was stated that the goal of the construction will be to ensure that, for a given number of
samples chosen, there exists a matrix sub-block that offers resistance against this attack. This is
equivalent to saying that for all attack vectors v, there exists a specific block Hi that offers protection
against it. In practice, for attack vectors of weight wt (v) ∈ [2i−1, 2i], the block Hi will be the one
ensuring security. Therefore, we want to analyze, for wt (v) ∈ [2i−1, 2i] and Hi

$← Hi
par the bias

of the distribution Oi
par(Hi) := {vHiei | ei $← Kw,i}. To bound the bias of Oi

par(Hi) the authors
thus analyzed the bias induced by all the w smaller sub-blocks of Hi, and introduced a notion of
good and bad matrices:

Definition 7.2.3. Take i > 0. Given a matrix Mj ∈ Fn×2i
2 , Mj is judged bad with respect to a vector

v ∈ Fn
2 if

wt
(
v⊤ ·Mj

)
/∈
[
2i

5
,
2i+2

5

]
.

Moreover, given w matrices (M1, . . . ,Mw) in Fn×2i
2 , we let Nv(M1, . . . ,Mw) be the number of

matrices that are bad with respect to v among M1, . . . ,Mw.

This means that a matrix is said to be "bad" with respect to a vector v if the bias it induces against
the test vector v is too large: here large means> 3/10 = 1/2−1/5, the constant is chosen arbitrarily.
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The goal of the proof is to guarantee that, with high probability, at least half of the matrices Mj

of Hi are good, thereby obtaining an upper bound on the bias of the full block Hi. This is what is
stated in the following lemma.

Lemma 7.2.1. There is a constant C , such that for any 1 ⩽ i ⩽ D, and for any vector v ∈ Fn
2 such

that wt (v) ∈ [2i−1, 2i], it holds that

Pr
[M1,...,Mw]

$← Hi
par

[
Nv(M1, . . . ,Mw) ⩾

w

2

]
⩽ 2−C·2

i·w.

The above lemma states that the bad situation where more than half of the Mj are bad is very
unlikely. As a consequence, with high probability, for any fixed vector v of weight in [2i−1, 2i], the
distribution Oi

par(Hi) has low bias. Note that the probability of this bad occurrence is so low that it
remains low even after a union bound over all vectors v of weight in [2i−1, 2i]. Hence, looking at
the output H · e =

∑
iHi · ei, each component Hi · ei, 1 ⩽ i ⩽ D will guarantee low-bias against

all attack vectors whose weight lies in [2i−1, 2i]. The XOR of these independent samples will inherit
the low-bias of all its components, and therefore resist all linear tests.

To prove the previous lemma, it is necessary to bound the number of bad matrices. In [BCGI+20a],
the authors reformulate the event that a matrix Mj is bad as a balls and bins problem. Let Hi

$← Hi
par.

By definition Hi = [M1, · · · ,Mw], with Mj ∈ Fn×2i
2 , 1 ⩽ j ⩽ w. Recall that by definition ofHi

par,
the rows of each Mj are generated independently from S1,2i . By considering that each column of
Mj can be seen as a bin, sampling a row of Mj is equivalent to taking 2i empty bins and throwing
a ball randomly into one of the 2i bins. Then, for a vector v of weight l ∈ [2i−1, 2i], the result
of v⊤ ·Mj is equivalent to throwing l balls into 2i bins and emptying all the bins containing an
even number of balls (this is because we work over F2). One can also imagine that the bins work
modulo 2, and therefore turn out to be empty after an even number of balls. Consequently, the event
wt
(
v⊤ ·Mj

)
/∈
[
2i

5 ,
2i+2

5

]
:= Ii is equivalent to the following event: after randomly throwing l

balls into 2i bins, the number T of bins that contain an odd number of balls satisfies T /∈ Ii.
We therefore define the following experiment:

— Take 2i bins and throw l balls into the bins in w consecutive phase.
— Each time that l balls have been thrown, we check that the proportion of the number of bins

that contain an odd number of balls is between 1/5 and 4/5, and clear out the bins.
— In the end, we return failure if more than w/2 of the w checks have failed.
To bound the probability of returning a failure, we define the following cost function

Φ (X1,1, · · · ,Xl,w) :=
∑w

k=1

(
2i−1 −

∣∣∣wt(⊕l
j=1Xj,k

)
− 2i−1

∣∣∣) , where each Xj,k, 1 ⩽ j ⩽

l, 1 ⩽ k ⩽ w, is the random variable corresponding to the bin in which the j-th ball of the k-th phase
was thrown (seen as a length-2i unit vector with a 1 at the bin position). The Xj,k are independent.
Bounding the number of bad matrices, the authors claimed, amounts to bounding Φ. More precisely
they claim that 2

Pr
[M1,...,Mw]

$←Hi
par

[
nv(M1, . . . ,Mw) ⩾

w

2

]
⩽ Pr

[
Φ(X1,1, · · · , Xl,w) <

w · 2i

10

]
. (7.1)

2. This equation turns out to be false after precise examination — the constants are not correct — but it does not change
the spirit of the proof.
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Afterwards, it suffices to bound Φ to conclude. The claim is that the following bound holds:

Pr

[
Φ(X1,1, . . . ,Xl,w) <

w · 2i

10

]
⩽ 2−C·2

i·w. (7.2)

The authors chose Φ as a suitable function to analyze: it is 2-Lipschitz, meaning that changing one
of the input of Φ can only change its output by at most 2. Strong concentration bounds are known
for Lipschitz functions, such as the McDiarmid inequality Lemma 2.2.3. Applying the McDiarmid
inequality directly gives us the desired result. The last remaining tool is to establish a lower bound
on the expectancy of Φ, as it appears in the McDiarmid inequality. This lower bound is stated in the
following lemma:

Lemma 7.2.2.

E [Φ (X1,1, . . . ,Xl,w)] ⩾
w · 2i

5
.

Assuming Lemma 7.2.2, the McDiarmid inequality provides a bound on Φ, which translates to a
bound on nv by Equation 7.1. A union bound over all vectors of weight between [2i−1, 2i] allows to
conclude:

Pr
[M1,··· ,Mw]

$← Hi
par

[
∃v ∈ Si,n, Nv(M1, . . . ,Mw) ⩾

w

2

]
⩽ 2D·2

i · 2−C·w·2i ⩽ 2−a·w,

with a = C
2 > D. The proof ends with a last union bound over all matrices Hi, for 1 ⩽ i ⩽ D.

Some notations. In the following, and for the rest of the chapter, we will denote by Xj,k the bin
into which the j-th ball of the k-th phase is thrown (Xj,k is a unit vector). Given a test vector v ∈ Fn

2

of weight wt (v) = l, we define Ri,l,k = wt
(
v⊤ ·M

)
= wt

(⊕l
j=1Xj,k

)
. That is, Ri,l,k it is the

number of bins that contain an odd number of 1 in the k-th phase; we usually write it Rl,k when i is
clear from the context. We further define Zi,l,k as Zi,l,k = |2i−1 −Rl,k| (also usually written Zl,k).
Eventually, we denote by Si,n the set of vectors v ∈ Fn

2 with wt (v) ∈ [2i−1, 2i].

7.2.3.2 Errors in the Proof

As already mentioned, while the proof strategy seems sound and appropriate, it contains some
errors that invalidate the proof. The first error is minor and can be corrected with a simple change of
constant. However, fixing the second error is more delicate.

— The first error appeared in Equation (7.1): the constant in the left hand part is incorrect.
Fortunately, it seems to be due to a reversed inequality and can be straightforwardly fixed by
adjusting the constant.

— The second and main error appears in the proof of Equation (7.2). The error stems from
an incorrect analysis in Lemma 7.2.2. After calculating an upper bound on the expectation
E
[
wt
(⊕l

j=1Xj,k

)]
, the authors deduced a bound on E

[∣∣∣2i−1 − wt(⊕l
j=1Xj,k

)∣∣∣]. How-
ever, a bound on E[Z] does not imply a bound on E[|Z − b|] in general (and typically when Z
is “concentrated away” from b). We believe the error stems from a use of the Jensen inequality
in the wrong direction. Up to the choice of the constant 1/5 (the proof actually only requires
any constant below 1/2), the lemma remains true; however, proving the lemma fundamentally
requires characterizing the shape of the distribution of the random variable wt

(⊕l
j=1Xj,k

)
.

This turns out to be non-trivial.
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7.2.3.3 Fixing the Main Error

Next, we provide a sketch of how we managed to fix the main error. The new proof correcting
all the errors can be found in Appendix C. As stated previously, the main error stemmed from using
the Jensen inequality in the wrong direction. Fortunately, it is possible to obtain a similar result from
a deeper analysis (although with worse constant parameters). What we aim to achieve is to measure
exactly how concentrated the random variable Z is from the expectancy. Our main contribution to
this analysis is the proof of the following lemma:

Lemma 7.2.3 (Fixing of the second error). For alln ∈ N, there exists β < 1/2 such thatE [Zl,k] < β·n.

Note that by design the inequality E [Zl,k ⩽ 1/2 · n] holds, but we need more than that. The
further away from 1/2 we are, the better the efficiency parameters.

Sketch. The proof consists in finding an upper bound on bothPr[Rl,k ⩾ p·n] andPr[Rl,k ⩽ (1−p)·n]
for p ∈ [12 , 1] and using it to find the the bound on E[Zl,k] =

∑2i−1−1
j=0 Pr

(∣∣Rl,k − 2i−1
∣∣ > j

)
.

Lemma 7.2.4. Let n = 2i > 27, l ∈ [2i−1, 2i] and µ = (1− 1
n)

l. There exists 0.5 ⩽ p ⩽ 1 such that
with θ = pn−l/2

µ − 1, it holds that

max (Pr [Rl,k ⩾ pn] ,Pr [Rl,k ⩽ (1− p)n]) ⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
.

To prove this lemma, we use the Occupancy Bound for balls and bins from Lemma 2.2.4. The
occupancy bound is about the proportion of empty bins but can be shrewdly transformed to relate to
our specific problem, which focuses on parity in bins. This concludes the sketch.

The end of the proof is the same as in the original proof, up to handling separately the case of
small i’s. Refer to the Appendix C for the details.

7.3 Making VDSD Efficient
In this section, we explain the efforts undertaken to make VDSD efficient. We managed to reduce

the security parameters from an unbearable w ≈ 107 to w ≈ 380, using three different kinds of
optimizations. First, we noted that the analysis was imprecise for small i. This led to a loss in
the parameters. The solution was to eliminate this side effect by replacing the first blocks of the
construction with a truly random block. The second major gain in efficiency came from a much
better analysis, which took into account blocks in a more precise manner. Finally, we also used some
computer-based simulations to get a bound on the actual value of β, again increasing efficiency.

7.3.1 VDSD 2.0

Next, we present some minor changes in the rVDSD assumption that helped reduce the bad side
effects while preserving all the desired properties. Where do the side effects come from? Remember
that in the rVDSD assumption, the matrix H is a concatenation of D blocks Hi, where each Hi is
a concatenation of w sub-blocks Mi, each sub-blocks having for rows unit vectors of size 2i. The
goal of the analysis was to bound the bias of Hiei against attack vectors of size θ(2i). However,
the bounds from the new correct analysis (see Appendix C) turned out to be much worse for small
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constant values of i. Moreover, for very small i, the general proof does not suffice, and we had to
conduct a tailored analysis. Therefore, the analysis suffers from the first blocks H1,H2, . . . . We
propose to replace the i∗ − 1 first blocks H1||H2|| . . . ||Hi∗−1 by a random matrix R, for i∗ a fixed
small constant. In this new VDSD assumption, the matrix has therefore the following shape:

H =
[
R Hi∗ . . . HD

]
.

Because R is a uniformly random matrix, it will resist linear tests as long as it has an appropriate
width (number of columns). This is important because He = Rer +

∑D
i=i∗ Hi · ei, with er being a

uniformly random vector. The question is how wide this matrix has to be: if it is not too big, then
the computations can still be performed.

Let t be the width of R. We will show that for a vector v with small Hamming weight, Rer has
no bias. Returning to the framework of linear tests, we show that the matrix R resists linear tests.
As shown in Section 4.3, resistance in the model of linear tests against vectors of weight below d is
related equivalent to saying that the code generated by the rows of R, which is a random linear code
of dimension 2D − t, has minimum distance at least d. Random codes are well-studied, and bounds
exist on the probability that a random code S of dimension 2D − t and codeword length 2D has a
minimum distance inferior to some bound d. Indeed:

Pr[S has minimum distance < d] ⩽ 2−t+H2(d/2D)·2D ,

where H2(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function. Therefore, for a
target probability of 2−128, we need to pick t = H2(d/2

D) · 2D + 128. In our case, we fixed i∗ = 5.
Therefore, we want to take a matrix R that will resist attacks of weight at most 2i∗−1 − 1 = 15. For
a number of samples 2D = 230, this results in t = 541.

We can therefore, define the WPRF as before, and note that it is still FSS-friendly: indeed, because
the block R that we are adding is still small, the number of operations induced by it remains small
even if it is dense. In fact, R has even a smaller description size than H1|| . . . ||Hi∗−1 : the latter
has exactly w · (i∗ − 1) ones. The analysis of the security parameters results in a w ≈ 380, in other
words, 1520 ones in comparison to the 541 (at most) ones of R.

Remark 7.3.1 (Droping the small complexity class property). The WPRF from the [BCGI+20a] also
enjoys the interesting property of being in a low complexity class: the WPRF is in fact in the depth-2
AC

0[⊕] class, meaning it can be computed from a depth-2 circuit, with a layer of AND gates at the
bottom and a single XOR gate at the top (both of arbitrary fan-in). In contrast, this VDSD 2.0 is no
longer in this class: we sacrificed the perfect regularity of the matrix to gain efficiency.

7.3.2 Security Analysis

For the rest of the analysis, we assume that we start with i ⩾ i∗ = 5. We stick with the notations
introduced by the previous proof of security, in Section 7.2.3.1. The adversary chooses an attack
vector v of Hamming weight l ∈ [2i−1, 2i]. We use the following random variable:

Zi,l,k =

∣∣∣∣∣∣wt
 l⊕

j=1

Xj,k
(i)

− 2i−1

∣∣∣∣∣∣ .
Unlike the original proof (see Section 7.2.3.1), this time we aim for a much more direct strategy.
Recall the distribution from Section 7.2.2.2: Opar(H) is the distribution which samples e $← Npar
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and returns H · e. The goal of the proof is still to demonstrate that the bias induced by Opar(H)
is exponentially small with exponentially close to 1 probability. We will rewrite the bias using the
above random variable Zi,l,k, which we will analyze next. As before, we decompose the distribution
Opar(H) =

⊕
i⩾i∗ Oi

par(Hi) ⊕ Opar(R). Here Oi
par(Hi) is the distribution that samples ei (as a

concatenation of w length-2i unit vectors) and outputs Hi · ei. Similarly Opar(R) is the distribution
that samples a random vector er of length t and output R · er . For any test vector v, we have
biasv(Opar) ⩽ biasv(Oi

par). Therefore, we focus on bounding the bias against a test vector v ofOi
par.

We have:

biasv(Oi
par) =

∣∣∣∣12 − Pr
[
(v⊤ ·Hi) · ei = 1

]∣∣∣∣ .
(v⊤ · Hi) · ei is the XOR of w independent terms (v⊤ · Hi,j) · ei,j where each ei,j is a length-
2i unit vector. Again, we can decompose the distribution Oi

par into w smaller distributions
D(1)

par(Hi), . . . ,D(w)
par (Hi) such thatOi

par =
⊕w

k=1D
(k)
par(Hi). Using the Piling-up lemma Lemma 2.2.2,

obtaining an upper bound on the bias of Oi
par is equivalent to upper bounding the bias against each

of the smaller distributions.

Pr

[
w⊕

k=1

Dk = 1

]
=

1

2

(
1−

w∏
k=1

(
1−

Ri,l,k

2i−1

))
.

Therefore, we obtain an expression of the bias of Oi
par in terms of the Zi,l,k random variables:

biasv(Oi
par) =

1

2
·

w∏
k=1

Zi,l,k

2i−1
.

Fix any bound B. Then by the above,

Pr[ biasv(Oi
par) > B ] = Pr

[
w∏

k=1

Zi,l,k > 2(i−1)w × (2B)

]
.

We have finally managed to express our partial bias only with the variable Zi,l,k. The study of this
random variable will complete the proof. However, observe that on the right-hand side, the Zi,l,k

appears in a product. This is not convenient, because usual concentration bounds concern primarily
sums of random variables and not products. The key observation is that if a product of values is
minimized by a bound B, the sum of these values is minimized when all the values are equal and
therefore minimized bywB1/w . In our case, this implies that whenever

∏w
k=1 Zi,l,k > 2(i−1)w×(2B),

it necessarily further holds that

w∑
k=1

Zi,l,k > w ·
(
2(i−1)w × (2B)

)1/w
.

Therefore

Pr

[
w∏

k=1

Zi,l,k > 2(i−1)w × (2B)

]
⩽ Pr

[
w∑

k=1

Zi,l,k > w ·
(
2(i−1)w × (2B)

)1/w ]
,

and finally,
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Pr
[
biasv(Oi

par) > B
]
⩽ Pr

[
w∑

k=1

Zi,l,k > w · 2(i−1) · c

]
, (7.3)

where c = (2B)
1
w . We managed successfully to obtain an expression using a sum of Zi,l,k . As in the

previous proof, we can now reintroduce the function Φ (X1,1, . . . ,Xl,w):

Φ (X1,1, . . . ,Xl,w) = 2i−1 · w −
w∑

k=1

Zi,l,k =
w∑

k=1

2i−1 −

∣∣∣∣∣∣wt
 l⊕

j=1

Xj,k

− 2i−1

∣∣∣∣∣∣
 .

This function is 2-Lipschitz, meaning that a change of input shall entail a difference in the output of
at most 2, and therefore we could still apply the McDiarmids’s inequality (see Lemma 2.2.3). First,
note that:

Pr [ Φ < E[Φ]− t ] = Pr

[
w∑

k=1

Zi,l,k > w · (E[Zi,l] + 2i · ζ)

]
,

with t = ζ · w · 2i. Let β be a constant such that E[Zi,l] ⩽ β · 2i, where β is a constant < 0.5.
Choosing ζ such that c = 2(β + ζ), we obtain that

Pr

[
w∑

k=1

Zi,l,k > w · 2(i−1) · c

]
= Pr

[
w∑

k=1

Zi,l,k > w · (E[Zi,l] + 2i · ζ)

]
= Pr [ Φ < E[Φ]− t ] .

Applying McDiarmid’s inequality we obtain:

Pr [ Φ < E[Φ]− t] < exp

(
− 2t2

4w · l

)
.

Replacing t by ζ · w · 2i gives:

Pr

[
w∑

k=1

Zi,l,k > w · 2i−1 · c

]
< exp

(
−w22i−1

l
· ζ2
)
. (7.4)

It remains then to put Equation (7.3) and Equation (7.4) together. Additionally we use that c = (2B)
1
w

and c = 2(β + ζ) to replace B by 1
2(2(β + ζ))w.

Pr

[
biasv(Oi

par) >
1

2
(2(β + ζ))w

]
⩽ exp

(
−w22i−1

l
· ζ2
)
.

Hence, by a union bound over all vectors of Hamming weight l,

Pr

[
∃v, wt (v) = l , biasv(Oi

par) >
1

2
(2(β + ζ))w

]
⩽

(
n

l

)
exp

(
−w22i−1

l
· ζ2
)
.

The proof continues by taking the union bound over all the vectors of weight in [2i−1, 2i]:

Pr

[
∃v, wt (v) ∈ [2i−1, 2i] , biasv(Oi

par) >
1

2
(2(β + ζ))w

]
⩽

2i∑
l=2i−1

(
n

l

)
exp

(
−w22i−1

l
· ζ2
)
,
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and it remains only to perform a single union bound for i∗ ⩽ i ⩽ D:

Pr

[
∃i∗ ⩽ i ⩽ D,∃v, wt (v) ∈ [2i−1, 2i] , biasv(Oi

par) >
1

2
(2(β + ζ))w

]

⩽
D∑

i=i∗

2i∑
l=2i−1

(
n

l

)
exp

(
−w22i−1

l
· ζ2
)
.

This bound is significantly tighter than what was achieved with the previous proof. Compared to the
original proof by [BCGI+20a], corrected in Appendix C, we gain several orders of magnitude. Why
is that the case? In essence, this is because the previous proof relied on Lemma 2.2.1 to bound the
bias of the XOR of independent distributions. However, this approach introduced some exponential
slackness in the number of distributions involved. To overcome this slackness, the strategy was to
only “count” the distributions that contribute the most to the bias, by identifying good distributions.
It was shown that, over the choice of H, a sufficient number of distributions would be good, and the
lemma was applied selectively to these good distributions. This approach ensured that the slackness
was compensated by the contribution of each distribution. If, instead, one tries to apply the lemmas
to all distributions, the resulting bound is too loose and does not provide any usable guarantee.

Here, we manage to directly take into account for the contribution to the bias of all distributions
by carefully rewriting the bias formula in terms of theZi,l,k random variables, and by using a standard
“optimization trick” to bound the product of the Zi,l,k in terms of their sum. This turns out to be the
key to returning to the function Φ, which is Lipschitz, which we can bound without incurring any
slackness in the number of distributions involved.

7.3.3 Optimization of the Parameters

The previous analysis introduced the value β as a constant such that E[Zi,l] ⩽ β · 2i. In the
correction of the original proof (see Appendix C), β was proven to be ⩽ 0.44. In this section, we
present better bounds found via computer analysis on β, and simultaneously optimize the different
parameters to achieve the smallest value of w for which we can ensure 80-bit security against all test
vectors, given a number of samples N = 230.

7.3.3.1 Optimization of β

We start by examining β via computer analysis. Our script is in Appendix D. Table 7.1 shows the
value of β obtained for different choices of n = 2i and l. For larger values of n and a fixed l = l(n),
note that our estimate value for β barely increases (for l < n) or decreases (for l ⩾ n). The value
l is taken to be in the interval [2i−1, 2i]. The Zi,l measures the distance to the mean (2i−1) of the
number of bins that contain an odd number of balls. For l smaller than 2i−1, this number diverges
from the middle value (2i−1) because not enough balls are thrown. Therefore, we are considering
only the case where l is lower bounded by 2i−1.
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Table 7.1 – Estimated value of β for different values of n and l, in a confidence interval of 99%
(rounded value ±0.002 )

n = 32 n = 64 n = 512 n = 1024 n = 2048

l = n
2 0.178 0.181 0.184 0.184 0.184

l = 3·n
4 0.111 0.111 0.111 0.111 0.112

l = n 0.084 0.073 0.067 0.067 0.067

7.3.3.2 Fine-tuning ζ and w

Let us revisit our bound. We have shown:

Pr(∃i∗ ⩽ i ⩽ D,∃v, wt (v) ∈ [2i−1, 2i] , biasv(Oi
par) >

1

2
(2(β + ζ))w)

⩽
D∑

i=i∗

2i∑
l=2i−1

(
n

l

)
exp

(
−w22i−1

l
· ζ2
)
.

We want to find a w such that, simultaneously:

(2 · (β + ζ))w/2 ⩽ 2−80 and
D∑

i=i∗

2i∑
l=2i−1

(
n

l

)
exp

(
−w22i−1

l
· ζ2
)

⩽ 2−80. (7.5)

Note that (
N

l

)
exp

(
−w22i−1

l
· ζ2
)

⩽ exp

(
ln(N) · l − w · 2

2i−1

l
· ζ2
)
.

Suppose that ln(n) · l < w · 22i−1

l · ζ2. For all i ∈ [i∗, D], and then for all l ∈ [2i−1, 2i] and
l∗ ∈ [2i

∗−1, l/2i · 2i∗ ] that

exp

(
ln(n) · l − w · 2

2i−1

l
· ζ2
)

⩽ exp

(
ln(n) · l∗ − w · 2

2i∗−1

l∗
· ζ2
)

Let B be an upper bound on exp
(
ln(N) · l∗ − w · 22i

∗−1

l∗ · ζ2
)

. Then

D∑
i=i∗

2i∑
l=2i−1

(
n

l

)
exp

(
−w22i−1

l
· ζ2
)

⩽ (D − i∗ + 1) · 2i∗−1 · B.

In practice, we choose w such that (D − i∗ + 1) · 2i−1 · B ⩽ 2−80. With i∗ = 5 and D = 30, we
obtain that (D − i∗ + 1) · 2i−1 < 29. Therefore, we want to find w such that

(2 · (β + ζ))w/2 ⩽ 2−80 and

exp

(
ln(n) · l∗ − w · 2

2i∗−1

l∗
· ζ2
)

⩽ 2−89. (7.6)

To find a suitable w, we calculate the required w for different values of l∗ and take the worst one. In
the following, we keep the number of samples n = 2D = 230. Assume that l∗ = 2i

∗−1. Then we
compute w as follows:
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— The second inequality can be rewritten as exp
(
2i

∗−1 ·
(
ln(2) · 30− 2 · w · ζ2

))
⩽ 2−80. We

compute that w · ζ2 ⩾ 12.35 is sufficient for the inequality to hold.

— Now set w = ζ2/12.35. The first inequality becomes (2 · (0.184 + ζ))12.35/ζ
2
⩽ 2−80. The

0.184 constant correspond to the value of β when l = 2i
∗−1, from Table 7.1. We can solve

numerically again, and obtain ζ ⩽ 0.219.

— Conclude with w = 12.35/ζ2 = 12.35/0.2192 ≈ 257.

The same process can be conducted for l∗ = 2i
∗ :

— The second inequality can be rewritten as exp
(
2i

∗ ·
(
ln(2) · 30− 1

2w · ζ
2
))

⩽ 2−89. We
compute that w · ζ2 ⩾ 45.5 is sufficient for the inequality to hold.

— Now set w = ζ2/45.5. The second inequality becomes (2 · (0.084 + ζ))45.5/ζ
2
⩽ 2−80. The

0.084 constant correspond to the value of β when l = 2i
∗ , from Table 7.1. We can solve

numerically again and obtain ζ ⩽ 0.347.

— Conclude with w = 45.5/ζ2 = 45.5/0.3472 ≈ 380.

We can perform exactly the same computation for all values of l∗ in the interval [2i∗−1, l/2i · 2i∗ ].
The calculations show that the biggest w is obtained at the extremity of the interval for l = 2i

∗ . We
fix our security parameter w to be equal to 380. Going back to our inequality we have shown that

Pr(∃v, wt (v) ⩾ 24, biasv(Opar) > 2−80) ⩽ 2−80.

Note that this computation is done for a fixed value D = 30. As you increase the value D, the
parameter w needs to be adjusted accordingly. More concretely, the analysis shows that these two
values are linearly connected: there should exist a value c such that w = c ·D. Unfortunately, the
asymptotic analysis gives a very poor value of c. In Table 7.2, we provide the ratio c = w/D, to give
an intuition of what the right constant should be.

Nevertheless, we can easily derive a lower bound c′ that approximates c. We consider the bound
exp

(
2i

∗ ·
(
ln(2) ·D − 1

2w · ζ
2
))

⩽ 2−89. For the left-hand expression to be less than 1, we feed
w · ζ2 > 2 ln(2) ·D. Similarly, from the requirement (2 · (β+ ζ))2 ln(2)·D/ζ2 ⩽ 2−80, we find another
trivial bound on ζ : the left-hand side expression is less than 1 if and only if ζ < 1/2− 0.084 = 0.416.
Therefore, this gives a lower bound on the value of w depending linearly on D only:

w > 2 ln(2)D/0.4162 ∼ 8D.

D w c = w/D

20 293 14.7
25 336 13.4
30 380 12.7
35 421 12
40 461 11.5

Table 7.2 – Security parameter w and the ratio w/D, for different values of D, computed with our
method above.
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7.3.3.3 Concrete Costs in Practice

We use the parameters above (w = 380, D = 30) and we compute the seed size and the
evaluation time of this PCF constructed using this rVDSD 2.0 assumption. In the construction, we
use the FSS primitive from [BGI16], which relies on the GGM tree and a PRG with target security
parameter λ = 128.

The key seed is composed of the share of the short vector of size 541 (from Section 7.3.1), and
the short DPF keys corresponding to the shares of the sparse vectors of ei. The size of a DPF key
for a domaine 2i and security target λ is equal to i(λ+2)+ 2λ (see Section 7.2.2.3). Thus, the size of
the seed is equal to 541 +

∑30
i=5w × (i(λ+ 2) + 2λ) = 25 · 106 = 3.12MB.

Regarding the computational cost, the number of calls to a PRG is w(i + 1) for each bloc i.
Therefore, the overall the costs of one evaluation is w(

∑30
i=5(i + 1)) = 1.82 · 105 calls to a PRG.

To give a rough runtime estimation, the PRG can be instantiated using two calls to fixed-key AES.
We estimate that one byte of AES-128 can be computed in ∼ 1, 3 cycles ([MSY21]), among the 16
bytes required. Therefore, the number of cycles is given by 3.64 · 105 · 16 · 1.3 = 7.57 · 106 cycles.
Using a 3.8GHz processor, this amounts to roughly 500 PCF evaluations per second on a single core.
We estimate that this on-paper estimation would not be far from reality because the computation
requires no data access, and therefore cache misses are unlikely. The computation is parallelizable:
using c cores increases this number to 500c evaluations per second. In the next and last section, we
explain some possible aggressive variants that achieve even better results.

7.4 Further Improvements and Future Works

7.4.1 Some Refined Analysis and Possible Small Optimization

We present here how small changes in the analysis can further improve the construction. We note
that in [CD23] the size of the random block R was chosen with too much precaution, and that it could
be chosen larger. This observation stems from the following: the part of the key corresponding to the
block R is only 541 bits, whereas the rest of the matrix costs

∑30
i=5w × (i(λ+ 2) + 2λ) = 25 · 106

bits for D = 30. By increasing the size of the block, we could hope to decrease the size of the key,
at least initially. It is intuitively better to balance these two different parts. Computation must also
be considered. When we increase i∗, it is initially good news because the number of PRG calls for
one evaluation depends on i∗. However, we also have to add the costs of the scalar product of two
vectors of the size of R, which is linear in the size of R. Additionally, we also apply a straightforward
optimization: the number of sub-blocks of each matrix Hi does not have to be fixed to a single w: in
fact, w can be a function of i. Therefore, we compute the different values of wi, and derive from them
the total seed size |k|, and the number T of PCF evaluations per second. The value of w does not
change much for larger values of i due to a threshold effect in the exponent (there is a multiplication
by 2i in the exponent, therefore the convergence is really fast).

Table 7.3 displays the values of w, |k|, T, |R| we obtain depending on the value i∗. Appendix E
provides a script for the computation of these parameters. We choose the value i∗ that achieves
the best trade-off in this case. We obtain that if we want to optimize the key size, one should take
i∗ = 17, associated with security parameter wi = 328, a key size of 2.03MB, and a number of PCF
evaluations per second of 782. We can also maximize the number of PCF evaluations per second by
taking a slightly larger seed of 2.04MB, producing 799 PCF evaluations per second.
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i∗ w(i∗) |k| T |R|

5 374 2.71 576 541
6 347 2.67 584 949
7 337 2.63 593 1732
8 334 2.58 603 3234
9 330 2.53 615 6107
10 329 2.47 629 11598
11 329 2.41 645 22064
12 329 2.34 663 41976
13 329 2.27 684 79747
14 328 2.20 707 151194
15 328 2.13 732 285893
16 328 2.07 757 538907
17 328 2.03 782 1012164
18 328 2.04 799 1893136
19 328 2.14 798 3523992
20 328 2.40 764 6523488
21 328 2.97 681 11997914
22 328 4.08 552 21897081

Table 7.3 – Security parameters w(i∗) , key size |k| (in MB), number of PCF evaluations per second
T and length of the matrix |R| depending on different values of i∗, in the case of D = 30

7.4.1.1 Discussion on the Size of the BlocksHi

In the construction, the size of each Hi is set to wi · 2i. By doing this, we are more or less halving
the density when moving from Hi to Hi+1. We question whether other sizes could yield better
results and propose fixing the size of the Hi to be equal to wi · bi. Each Hi is made of wi matrices
(Mi,k)1⩽k⩽wi

whose rows are of size bi (instead of 2i). We perform an exact generalization of the
original security analysis (Section 7.3.2): the goal is to show that the i-th block resists against attack
vectors of Hamming weight l ∈ [bi−1, bi]. The number of blocks constituting the matrix H also needs
to be revisited. Previously, we aimed for D blocks, targeting a number of samples n = 2D . Now, we
will target Dnew blocks such that bDnew = 2D = n. The two inequalities we have to satisfy become

(2 · (β + ζ))w/2 ⩽ 2−80 and

exp

(
ln(b) ·Dnew · l∗ − w ·

b2i
∗−1

l∗
· ζ2
)

⩽ 2−80(Dnew − i∗ + 1)bi
∗
.

We perform different analyses to find the b that offers the best results in key size and number of
PCF evaluations per second. The target number of samples in the original construction n = 230. It
turns out that it is more advantageous to choose a larger b to reduce the number of blocks Dnew of
H, benefiting from the fact that the security parameter wi of the block i does not grow too fast at the
beginning. After some point, the security parameter grows too much, and the trade-off starts to be bad.
We decide to set b to be a power of 2, allowing us to reach exactly 230 samples. Therefore, we consider
b ∈ {4, 8, 32, 64, 1024}, corresponding to the number of blocks Dnew ∈ {15, 10, 6, 5, 3}. The results
associated with these cases are displayed in Table 7.4. We take into account the optimization from
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Section 7.4.1, which consists of replacing the first i∗ blocks of H by a tailored random matrix R.
Refer to Appendix E for the script computing these parameters.

i∗ 2 3 4 5 6 7 8 9 10 11
b = 4 w(i∗) 757 597 563 562 561 561 561 561 561 561

|k| 1.34 1.3 1.25 1.2 1.14 1.07 1.01 1.01 1.23 2.18
T 1222 1255 1296 1350 1419 1505 1602 1666 1547 1062
|R| 218 541 1732 6107 22 ·103 80 ·103 29 ·104 10·105 3.5 ·106 1.2 ·107

i∗ 2 3 4 5 6 7 8 9 10
b = 8 w(i∗) 1080 1014 1009 1009 1009 1009 1009 1009 1009

|k| 1.18 1.11 1.03 0.94 0.88 1.13 3.28 15.96 73.15
T 1435 1509 1617 1766 1924 1754 789 180 40
|R| 328 1431 12 ·103 80 ·103 5.4 ·105 3.5 ·106 2.2·107 1.2 ·108 5.8·108

i∗ 2 3 4 5 6
b = 32 w(i∗) 3686 3676 3676 3676 3676

|k| 1.78 1.55 1.32 2.39 27.4
T 994 1129 1338 965 105
|R| 949 22 ·103 5.4 ·103 1.2 ·107 2.1 ·108

i∗ 2 3 4 5
b = 64 w(i∗) 7246 7241 7226 7226

|k| 2.57 2.11 1.96 16.4
T 702 840 980 172
|R| 1732 80 ·103 3.5·105 1.2 ·108

i∗ 2 3
b = 1024 w(i∗) 26797 26797

|k| 3.89 3.66
T 487 593
|R| 22 ·103 1.2 ·107

Table 7.4 – Security parameterw(i∗) , key size |k| (in MB) and number of PCF evaluations per second
T and width of R depending on different values of i∗ and different values of b.

We obtain that the best result corresponds to b = 8, Dnew = 10, and with the random block R
replacing the blocks 1 . . . i∗ − 1 = 5, of size 538907. This leads to a key size of 0.88MB and 1924
PCF evaluations per second.

Note that for this optimization, we examined what happens when taking the size of one block to
be equal to wib

i, with a fix b. We leave for future work the question asking whether there is any gain
from using different bi.

7.4.2 The All-prefix Variant Optimization

[BCGI+20a] also presented an interesting optimization called the all-prefix variant. Here, we
present this variant, explain why it is more efficient, and provide some insight for this aggressive
variant. In the original construction, D different vectors ei are sampled for constructing the error
vector, each one being the concatenation of w unit vectors of size 2i. Instead, let assume we start by
sampling only eD , of size 2D·w - the biggest and sparser vector. Then we construct the ei recursively
as follows:

— Decompose ei+1 = [e(i+1),1 � · · ·� e(i+1),w] into its w different parts, each ei+1, j being a
unit vector of size 2i+1 (// denote vertical concatenation).

— For u ∈ F2i
q a unit vector define

F(u) :=
[
u0 ⊕ u2i−1 ,u1 ⊕ u2i−1+1, . . . ,u2i−1−1 ⊕ u2i−1

]
∈ F2i−1

q .
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We call this operation a folding 3 of the vector u. It simply consists to cut your vector u in two
parts, and to xor bit by bit the parts. The resulting vector is therefore twice smaller.

— Define ei =
[
F(e(i+1),1) � · · · � F(e(i+1),w)

]
.

This produces a valid rVDSD error vector e. Similarly, we can construct the full matrix H by only
sampling HD, and constructing the rows of Hi by applying the folding operation on the rows of
Hi+1. The advantages of this construction are twofold:

— First, it offers significant gains in both seed size and computational time. By doing so, the
parties only need a secret sharing of the longest vector eD as their seed. This leads to concrete
improvements regarding the seed size: assuming the security parameter w is still equal to
380, it suffices to share 541 + 380 · (30 · 130 + 256) = 0.2MB. This also impacts the main
costs of the evaluation, which is the PRG evaluations to create the shares of the error vector.
Note that the folding operation commutes with additive sharing (we are doing just XOR after
all). Therefore, we just need to produce the shares of eD , and the shares of the smaller ei can
be obtained via the folding operations, which comes down to only small linear operations.
Therefore, this would lead to several calls to AES equal to 2 · 380 · 31 = 2.3 · 104. Using a
3.8GHz computer, we estimate that this leads to 3950 evaluations per second.

— The folding operation is compatible with the additive sharing: if you have a sharing of a
sparse vector you can construct the shares of the folding of the vector. The folding operation
commutes with the additive sharing operation.

This optimization could be combined with the previous optimizations (Sections 7.4.1 and 7.4.1.1),
but the results are not as good as one might hope. The point of the all-prefix optimization is to
take advantage of reducing all the blocks to only one, and therefore the larger the number of blocks
the better the reduction. Thus, the two optimizations compete (with the same goal: reducing the
number of blocks to effectively share). The gain due to the size of the matrix R and the choice of the
parameter b is, therefore, less convincing for many parameters. Nonetheless, with b = 4 and taking
i∗ = 7, we obtain a seed of size 0.17MB and 5106 PCF evaluations per second.

7.4.3 Security of the All-prefix Variant

In this subsection, we discuss the security analysis of the all-prefix variant. By defining the
matrix H via this folding, the analysis of security presented in Section 7.3.2 no longer holds. Indeed,
the previous proof (Section 7.3.2) assumes that the different blocks Hi are independent of one
another, which is not the case in the all-prefix variant. Therefore, a new analysis must be conducted.
Unfortunately, it has not proven yet to resist linear tests - this is why it is called an aggressive variant.
Next, we discuss this variant of VDSD and provide some possible leads on how to prove its security.

7.4.3.1 Rewriting the Associated Assumption

For simplicity, we will assume that b = 2 and that no random matrix has been added to the
construction. We can express the transformation that associate to eD the full vector e by a matrix
X ∈ F((2D+1−2)·w×2D·w)

2

X =


X0

X1
...

XD

 .

3. Not to be mixed up with the folding operation defined in Section 6.2.1.
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where

Xi =


Ji 0 . . . 0
0 Ji . . . 0
...

...
0 0 . . . Ji

 and Ji =
(
Ii Ii . . . Ii

)
.

The Xi are matrices of size 2i · w × 2D · w, the Ji are matrices of size 2i × 2D, and the Ii is the
identity matrix of size 2i. We have therefore:

X · eD = e and HDX
⊤ = H.

Therefore, the expression of the associated rVDSD assumption in the aggressive variant can be
rewritten as follows:

H · e = HDX
⊤ ·X · eD.

We compute

X⊤ ·X =

 G . . . 0
... . . . ...
0 · · · G

 ,

where G ∈ F2D×2D
2 is defined by:

G =
D∑
1

Gi with Gi =


Ii Ii . . . Ii
Ii Ii . . . Ii
...

... . . . ...
Ii Ii . . . Ii

 .

Let HC = HD ·X⊤ ·X. The matrix HC has the following shape:

HC =

 c1,1 . . . c1,w
... . . . ...

cl,1 . . . cl,w

 .

The ci,j are called circle and enjoy special structures and symmetries that we will not discuss in
this manuscript. You can see that the matrix HC is divided into w parts, each one independent from
the other (as was HD). Therefore, we can try to analyze the bias of this new problem, with regular
sparse noise eD , and with matrix HC .

Let us be more precise about ci,j . Each such vector is of size 2D . On top of the folding operation
F that we defined earlier, we build the following Fjoin(x, i). Given input x ∈ F2D

2 , it returns
[F i(x)|| · · · ||F i(x)], which is a vector composed of 2i vectors of size 2D−i, produced by the successive
application of the folding operation F . Remember that HD is formed with w blocks. Let xk,j be the
k-th row of the j-th block. Then ci,j =

∑D
i=1Fjoin(xk,j , i) := F (D)(xk,j).

7.4.3.2 The Assumption

We finish this chapter by giving a taste of the open problem we are facing and some of our
reflection to solve it. This is still ongoing research.

LetDallpref be the distribution that samples a matrix HD and returns the matrix HC . The all-prefix
variant is therefore conditional on the validity of the following assumption:
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Assumption 7.4.1. Let HC
$← Dallpref. Then it holds that:

{HC ,HC · eD : eD
$← Kw,D} ≈ {HC , y : y

$← F2D

2 }.

In order to give evidence for this assumption, we can try to analyze it using the linear attack
framework. This involves studying the bias of the distribution {v ·HC · eD : eD

$← Kw,D}. We can
still try to analyze this construction with the balls and bins model: the process is the same as before,
counting the number of bins that contain an odd number of balls. However, this time, several balls
are thrown into different bins each time, making the analysis more tedious. Different possibilities of
proof have been explored (without success) and are still ongoing:

— Analogous analysis as in the original proof, primarily a dead-end due to all the dependencies
that appear and their incompatibility with the concentration bounds we use.

— A more "direct" approach, which involve expressing the bias probability with the number of
concrete possibilities that achieve that event. This approach aims to see the problem as a
combinatorial one. To do so, we analyzed deeply the structure of the vectors ci,j and how they
can be combined. Nevertheless, it has not yet led to something conclusive.

— An analysis of HC and, more specifically, trying to obtain its dual distance to apply Proposi-
tion 4.3.1. Note that here again, the ci,j provide some interesting information about the matrix.
In fact, it can be shown that HC is equal to

HC = C×
[
P1 . . . Pw

]
C =

 F (D)(u0)
...

F (D)(u2D−1)

 ,
where the Pi are matrices of permutations and ui is a the unit vector of size 22

D with the
non-zero coordinate at index i. This construction possesses some great structures, but no
method to exploit them has been found yet, and we leave it for future work.
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Conclusion and Open Questions

In this thesis, we investigated MPC protocols, specifically focusing on constructions based on the
GGM protocol and the use of correlated pseudorandomness. We analyzed the line of work initiated
by Boyle et al. [BCGI18; BCGI+19b; BCGI+20b; BCGI+20a], which targets two promising new tools
in cryptography: Pseudorandom Correlation Generators (PCGs) and Pseudorandom Correlation
Functions (PCFs). This thesis was articulated around three different axes:

1. We presented a construction of PCGs for OLE correlation, building on the work of [BCGI+20b].
They presented a PCG for OLE, whose security relies on the Ring Syndrome Decoding assump-
tion (R-SD), in the caseR = Fq[X]/(P (X)), for P a polynomial that splits into linear distinct
factors. This construction suffered from a problematic constraint: the OLEs are produced on a
field Fq , and q must satisfy q > n, where n is the number of OLEs created. We reduced the
constraint to q > 2. This was achieved by choosing a different underlying structureR = Fq[G].
We introduced and thoroughly studied the associated security assumption, namely the QA-SD
assumption.
Furthermore, we presented some techniques to produce PCGs for OLE over F2, removing
the constraint altogether. Our construction, FOLEAGE, offers the best performance for the
massive production of OLEs (producing over 12 million triples per second in the 2-party setting
on one core of a commodity machine).
Nevertheless, these results are not entirely satisfactory. Indeed, as we have shown in Section 5.4,
the case q = 2 cannot be achieved natively from our construction; this is one of its major
limitations. The solution we proposed to achieve q = 2 in FOLEAGE was more via an indirect
route, which entailed a non-negligible communication overhead. This raises the natural
question:

Question 7.4.1. Does there exist some ring R in which we can operate our protocol, creating
OLEs over F2?

Different structures need to be investigated. We mentioned in Section 5.4.3 that choosing the
set of Boolean functions

R = F2[X1, . . . , Xn]/(X
2
1 −X1, . . . , X

2
n −Xn),

paired with a variable density error vector, could be an interesting lead. This is something we
will definitely be investigating in the future.

2. Additionally, we also studied a Pseudorandom Correlation Function (PCF) construction from
[BCGI+20a]. The construction’s security relies on a particular variant of syndrome decoding
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in the case of a parity-check matrix and an error vector having a variable density structure.
We explained the motivation and the description of the variant, the VDSD assumption. We
proposed some improvements in the analysis to make the construction applicable in practice
(the initial construction was more a proof-of-concept, and was by no means efficient), alongside
correcting the initial proof of security. While our construction is not state-of-the-art compared
to other PCFs, it still offers interesting aspects, such as the change of noise in the general
assumption. This is typically something well worth exploring. As explained in Section 7.4, we
have already pursued several improvements for this construction. It appears that the bounds
we use may still be quite loose, and therefore some improvements in this area might already
lead to interesting progress.
Mainly, we hope to find a way to prove the assumption at the end of Section 7.4:

Question 7.4.2. Is the all-prefix variant from Section 7.4.2 secure?

This has been a problem we studied during the thesis without conclusive results yet, but the
question is worth pursuing.

3. Finally, the thesis also revolved around the study of different variants of the syndrome decoding
assumption and their analysis. To help analyze possible attacks against them, or to prove the
security of the assumptions we used, we pursued the linear attack framework. This framework,
introduced by [BCGI+20a], says that for all linear attacks, we can associate an attack vector
which depends only on H, such that v⊺ ·H · e is biased. In order to be secure, the linear
test framework does not beat around the bush: it requires that the bias associated with v,
for all possible attack vectors v, is negligible. We showed that being secure in the linear test
framework signifies that even the best attack vector will not provide a significant bias. We
provided an analysis of the literature and explained how some classical algorithm fit within
the framework. We can identify two different points to analyze further:
1) It is always assumed that the adversary can find the best attack vector, and we can question
this assumption, and 2) in order to recover the secret, an adversary would require multiple
attack vectors, but the quality of each of them might be questionable.
Both points are good questions, and we currently believe that the framework is overly conser-
vative and that we could improve it by targeting its precise limitations.

Question 7.4.3. Can we improve the linear test framework to make it less conservative and closer
to what real attacks do in practice?
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Appendix A
Differed definitions related to PCG and PCF

In this section, we present the formal definitions of the programmability, introduced in Section 3.3.

Definition A.0.1 (Programmable PCG). A tuple of algorithms
PCG = (PCG.Gen,PCG.Expand) follows the syntax of a standard PCG, with the following modifica-
tions: PCG.Gen(1λ) takes additional random inputs ρ0, ρ1 ∈ {0, 1}κ, for a fixed parameter κ of size
poly(λ), is a programmable PCG for a simple bilinear 2-party correlation Cn

e (specified by a bilinear
pairing e : G1 ×G2 → GT for some groups G1,G2 and GT ) if the following holds:

• Correctness. The correlation obtained via:{
((R0, S0), (R1, S1))

∣∣∣∣ ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1),
(Rσ, Sσ)←PCG.Expand(σ, kσ) for σ ∈ {0, 1}

}
is computationally indistinguishable from Cn

e (1
λ).

• Programmability. There exist public efficiently computable functions ψ0 : {0, 1}∗ → Gn
1 ,

ψ1 : {0, 1}∗ → Gn
2 such that

Pr
ρ0, ρ1

$← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)
(R0, S0)← PCG.Expand(0, k0),
(R1, S1)← PCG.Expand(1, k1)

[
R0 = ψ0(ρ0), R1 = ψ1(ρ1)

]
⩾ 1− negl(λ).

• Programmable security. We define the following distributions:

A =

{
(k1, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)

}

B =

{
(k1, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1, ρ̃0 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ̃0, ρ1)

}

C =

{
(k0, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ1)

}

D =

{
(k0, (ρ0, ρ1))

∣∣∣∣ ρ0, ρ1, ρ̃1 $← {0, 1}κ, (k0, k1)←PCG.Gen(1λ, ρ0, ρ̃1)

}



134 Differed definitions related to PCG and PCF

Security asks that A ≈ B and C ≈ D.
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Existing Generic Attacks on Syndrome
Decoding

Outline of the current chapter

B.1. General ISD framework. 136
B.2. Stern/Dummer 137
B.3. MMT 138
B.4. BJMM 140

An important method to attack Syndrome Decoding problems in the general case is to look at the
Information Set Decoding types of algorithms. Starting with the seminal work of Prange [Pra62], ,
this line of algorithms has been extensively studied and improved via Birthday-like paradox technique
[Ste89], representation technique [MMT11], nearest neighbors [MO15a] or sieving [GJN23]. ISD
algorithms are among the bests known attacks so far on purely random codes, and as such, the
security analysis of the Syndrome Decoding assumption has to take into account the attack. We
describe a general template in the next subsection, and will specify the different specifities afterwards.
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B.1 General ISD framework.

We consider Syndrome Decoding in its search variant: given a matrix H ∈ F(n−k)×n
q and

y ∈ Fn−k
q , find e ∈ Fn

q such that the weight of e achieves a certain target t.
ISD algorithms take their strength and their name from the concept of Information Set. For a set

I ⊂ [0, n− 1], we define by I it’s complementary in [0, n− 1] : I = [0, n− 1]\I . For a matrix H,
we denote by HI the restriction of H to the columns indicated by I , and for a vector e, we write eI
for the restriction of e to the entries indexed by I . Given a matrix H, an Information Set is a set
I ⊂ [0, n− 1], such that the |I| = k + ℓ, ℓ ∈ N, and HI is full rank. The goal of an ISD would be to
guess an Information Set such that errors are not in it. Because all the information are contained in
the information set, it is clear we can break everything once you get the proper information set.

What follows is a template for ISD algorithm freely inspired from the lectures notes of [Deb23b].
Consider two parameters 0 ⩽ ℓ ⩽ n− k and 0 ⩽ p ⩽ min(t, k + ℓ)

1. Pick randomly a subset I ⊂ [0, n− 1], |I| = k + ℓ, until HI is full rank.

2. Perform a Gaussian elimination to compute a non-singular matrix U ∈ F(n−k)×(n−k)
q such

that UHI =

[
In−k−ℓ

0

]
, and compute s̃ = Us. Write UHI =

[
H1

H2

]
.

3. Compute L ⊂ {e2 ∈ Fk+ℓ
q , wt (e2) = p,H2e2 = s̃I} according to a given ISD-subroutine.

4. Find a e2 ∈ L such that e1 = s̃I −H1e2 has weight t− p. If no such e2 is found, return to
Step 1. If it is found, return the vector e′ such that e′I = e2 and eI = e1.

Remark B.1.1. We did not take into account permutation matrix because it has no purposes aside
pedagogical. While [Sen23] also offers a comparable general framework, it introduces a permutation
matrix to denote an information set, a classic selection for clarity reasons. However, in practical
application, this approach introduced overheads due to matrix multiplication. Consequently, we
have opted not to pursue it.

An ISD algorithm is an iterative algorithm that loops until it finds a solution. The algorithm
is therefore probabilistic, with its iterations being independent, and its complexity is given by the
complexity of Steps 2 and 3, multiplied by the number of iterations (i.e., the inverse of the probability
of finding an information set for which the procedure terminates). An instance of the general ISD
algorithm is given by the choice of the parameters (ℓ, p) and of the ISD subroutine to compute L.
Next, based on the work of Sendrier [Sen23], we expose the practical complexity of the different
variants of the ISD algorithm defined above and take into account some polynomial factors while
being conservative.

Remark B.1.2. In this analysis, we do not consider the modern and more recent attacks on syndrome
decoding using nearest neighbors search [Tor17; BM18], as they are not considered to be practical,
even in the binary field case. To the best of our knowledge, there has be no work on extending these
algorithms to the general case of Fq , and we believe that it would not be practical in our range of
parameters.

We denote byT (n, k, q, ∗) the complexity of a given ISD, ∗ indicating here the different parameters
of the variant considered to be tuned. As stated before an ISD algorithm is by essence probabilistic,
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and its complexity can be formulated like this:

T (n, k, q, t, ∗) = TG(n, k, q, ∗) + CS(n, k, q, ∗)
PS(n, k, q, t, ∗)

,

where TG(n, k, q, ∗) counts the costs of the Gaussian elimination done at each iteration,CS(n, k, q, ∗)
is the complexity of the subroutine chosen for this ISD, and PS(n, k, q, t, ∗) the probability of
randomly selecting an Information Set that led to a solution.

Remark B.1.3 (Gaussian Elimination Cost). For our estimations, we consider the following cost

TG(n, k, q, p, ℓ) = (n− k − ℓ)n.

In other words, we consider here that Gaussian elimination costs just as much as the size of the
matrix, which is a very conservative lower bound.

B.2 Stern/Dummer

The algorithm proposed by Stern [Ste89] and independently by Dummer [Dum89] corresponds
to the case where we consider the following subroutine:

1. We create two lists

L1 =
{(

e0 =

[
e′

0

]
,H2e0

) ∣∣∣∣ e′ ∈ F
k+ℓ
2

q , wt
(
e′
)
=
p

2

}
L2 =

{(
e′0 =

[
0
e′

]
, s̃I −H2e

′
0

) ∣∣∣∣ e′ ∈ F
k+ℓ
2

q , wt
(
e′
)
=
p

2

}
each list is of size |L1| = |L2| =

((k+ℓ)/2
p/2

)
(q − 1)p/2.

Complexity: O(|L1|).

2. Search for all pairs ((e0,H2e0), (e
′
0, s̃I −H2e

′
0)) ∈ L1×L2 such that H2 ·e0 = s̃I −H2e

′
0,

and construct the list

L = {e0 + e′0, ((e0,H2e0), (e
′
0, s̃I −H2e

′
0) ∈ L1 × L2,H2 · e0 = s̃I −H2e

′
0}.

The list L created like this satisfies that

L ⊂ {e2 ∈ Fk+ℓ
q , wt (e2) = p,H2e2 = s̃I}.

The size of the list is |L| =
((k+ℓ)/2

p/2

)2
(q − 1)pq−l.

Complexity: O(max(|L1|, |L|)).

3. We perform Step 4 of the general ISD framework to find e1 of weight t− p.

Complexity: O(|L|(n− k − ℓ)(k + ℓ)).
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Proposition B.2.1 (Stern Algorithm). The complexity of an iteration of the Stern algorithm is given by

CS(n, k, q, p, l) = O(|L|(n− k − ℓ)(k + ℓ) + max(|L1|, |L|) + |L1|)

with

|L1| =
(
(k + ℓ)/2

p/2

)
(q − 1)p/2 |L| =

(
(k + ℓ)/2

p/2

)2

(q − 1)pq−l

and the probability of finding a solution is

PS(n, k, q, t, p, l) =
(
k+ℓ
p

)(
n−k−ℓ
t−p

)(
n
t

) ·

((k+ℓ)/2
p/2

)2(
k+ℓ
p

) =

((k+ℓ)/2
p/2

)2(n−k−ℓ
t−p

)(
n
t

) .

Remark B.2.1. The probability of success is obtained as the probability of having an error vector
that has exactly p 1’s on the chosen information set (first fraction) multiplied by the probability that
the error on the information set is equally distributed into the two halves of the corresponding vector
eI .

Remark B.2.2. The complexity given at Step 1 and 2 is voluntarily given without any polynomial
factor, for conservative purposes. In fact, for each element of the lists, we have to perform the
computation of s̃I −H2e

′
0. This costs naively ℓ(ℓ + k) per element in the list (for a total cost of

O(ℓ(ℓ+ k)|L1|). Second, we have to check for equality among vectors of size l, and this costs l for
each element in the list (for a total cost of O(max(|L1|, |L|) · ℓ). Nevertheless, some optimization
exists for these Steps (see [Pet10]). Therefore, we chose to stick with O(|L1|) and O(max(|L1|,L|)),
as conservative lower bounds.

Corollary B.2.1 (Prange and Lee Brickell complexities). The Prange algorithm [Pra62] is a very
particular case of Stern algorithm with p = 0, ℓ = 0 and no subroutine. In the case of Prange, we have

C(n, k, q, t) = 0 PS(n, k, q, t) =
(
n−k
t

)(
n
t

) .

The same goes for the Lee-Brickell algorithm [LB88], by taking ℓ = 0 with only p to optimize, and no
subroutine. In the case of Lee-Brickell we therefore have:

C(n, k, q, t) = 0 PS(n, k, q, t) =
(
k
p

)(
n−k
t−p
)(

n
t

) .

B.3 MMT
The MMT algorithm [MMT11] of May et al. introduced the representation technique. They remark

that we can split a given vector e of weight p into R different sums of two vectors e1 and e2, of the
same size but weight p/2, and disjoint support.

e = e1 + e2, wt (e1) = p/2, wt (e2) = p/2.

Remark thatH2e = s̃I impliesH2e1 = s̃I−H2e2. Therefore they createL1,0 ⊂ {H2e1, wt (e1) =
p/2} andL1,1 ⊂ {s̃I−H2e2, wt (e2) = p/2} and look for possible collisions. R is called the number
of representations, and we have that

R =

(
p

p/2

)
.
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Let 0 ⩽ r = logq(R) ⩽ l. The subroutine is as follows:
1. For 0 ⩽ i ⩽ 1, construct the following lists

Li,0 =
{(

e0 =

[
e′

0

]
,H2e0

) ∣∣∣∣ e′ ∈ F
k+ℓ
2

q , wt
(
e′
)
=
p

4

}
,

Li,1 =
{(

e′0 =

[
0
e′

]
, s̃I −H2e

′
0

) ∣∣∣∣ e′ ∈ F
k+ℓ
2

q , wt
(
e′
)
=
p

4

}
.

The size of each list is |L0,0| = |L0,1| = |L1,0| = |L1,1| =
((k+ℓ)/2

p/4

)
(q − 1)p/4.

Complexity: O(|L0,0|).

2. For 0 ⩽ i ⩽ 1, and given a fix set of r entries, search for all pairs ((e0,H2e0),
(e′0, s̃I −H2e

′
0)) ∈ Li,0 × Li,1 such that H2 · e0 = s̃I −H2e

′
0 on the r entries. Construct

the list

Li,2 =
{
e0 + e′0, (e0,H2e0)

∣∣ (e′0, s̃I −H2e
′
0)) ∈ Li,0 × Li,1,H2e0 = s̃I −H2e

′
0

}
.

We have that
Li,2 ⊂

{
e2 ∈ Fk+ℓ

q

∣∣∣∣ wt (e2) = p/2,H2e2 = s̃I

}
.

The size of the lists resulting from the merge is |L0,2| = |L1,2| = |L0,0|2/qr .

Complexity: O(max(|L0,0|, |L0,2|)).

3. Merge the two previous lists again, to obtain L which contains vectors of size k + ℓ, weight p,
and with the appropriate fixed value for the remaining ℓ− r coordinates of their syndromes.
The size of the resulting list is |L| = |L0,0|4/ql+r .

Complexity: O(max(|L0,2|, |L|)).

4. We perform Step 4 of the general ISD framework to find e1 of weight t− p.

Complexity: O(|L|(n− k − ℓ)(k + ℓ)).

Proposition B.3.1 (General MMT algorithm). The complexity of an iteration of the MMT algorithm is
given by

CS(n, k, q, p, l) = O(|L|(n− k − ℓ)(k + ℓ) + max(|L0,0|, |L0,2|, |L|) + L0,0)

with

|L0,0| =
(
(k + ℓ)/2

p/4

)
(q − 1)p/4 |L0,2| =

(
(k + ℓ)/2

p/4

)2

(q − 1)p/2q−r

|L| =
(
(k + ℓ)/2

p/4

)4

(q − 1)pq−ℓ−r R =

(
p

p/2

)
r = logq(R)

and the probability of finding a solution is

PS(n, k, q, t, p, l) =
(
k+ℓ
p

)(
n−k−ℓ
t−p

)(
n
t

) ·

((k+ℓ)/2
p/4

)4
(
k+ℓ
p/2

)2 .
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=

+

e

e1

e2

p

p/2− ε1

p/2− ε12ε1 ε2

2ε1 ε2

Figure B.1 – BJMM representations

Remark B.3.1. The probability of success is obtained as the probability of having an error vector
that has exactly p errors on the chosen Information Set (first fraction) multiplied by the probability
that e1 has p/2 errors equally distributed into its two halves, multiplied again by the probability that
e1 has p/2 errors equally distributed into its two halves.

B.4 BJMM
The algorithm introduced by Becker et al. [BJMM12], proposes an improvement of the MMT

algorithm, by increasing the number of representations one can get. Their idea follows the approach
of MMT, except that an additional parameter ε is introduced. Let p1 = p/2 + ε. Their idea is still to
write a vector e ∈ Fk+ℓ

q , of weight p as a sum.

e = e1 + e2

but now we want to allow their support to coincide on a proportion ε, and we ask that wt (e1) =
wt (e2) = p1.

The support of e1 and e2 can coincide in two different ways: either the sum of the entries
vanishes, or they do not vanish. For this reason, we split ε = ε1 + ε2. For e to have a support of size
p, the support of e1 and e2 should coincide on the same 2ε1+ ε2 entries, and be distinct on the other
p/2− ε1 entries, as represented in Figure B.1. The number of representations is therefore given by

R =
∑

ε1+ε2=ε

(
p

p/2− ε1

)(
p/2 + ε1

2ε1

)(
k + ℓ− p

ε2

)
(q − 1)2ε1+ε2 .

Let r = logq(R). The subroutine is as follows:

1. For 0 ⩽ i ⩽ 1 construct the following lists

Li,0 =
{(

e0 =

[
e′

0

]
,H2e0

) ∣∣∣∣ e′ ∈ F
k+ℓ
2

q , wt
(
e′
)
=
p1
2

}
,

Li,1 =
{(

e′0 =

[
0
e′

]
, s̃I −H2e

′
0

) ∣∣∣∣ e′ ∈ F
k+ℓ
2

q , wt
(
e′
)
=
p1
2

}
.

The size of each list is |L0,0| = |L0,1| = |L1,0| = |L1,1| =
((k+ℓ)/2

p1/2

)
(q − 1)p1/2.

Complexity: O(|L0,0|).
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2. For 0 ⩽ i ⩽ 1, and given a fix set of r entries, search for all pairs (e0, e′0) ∈ Li,0 × Li,1 such
that H2 · e0 = s̃I −H2e

′
0 on the r entries. Construct the list

Li,2 =
{
e0 + e′0

∣∣ (e0,H2e0), (e
′
0, s̃I −H2e

′
0)) ∈ Li,0 × Li,1,H2 · e0 = s̃I −H2e

′
0

}
.

We have that

Li,2 ⊂
{
e2 ∈ Fk+ℓ

q | wt (e2) = p1/2,H2e2 = s̃I

}
The size of the lists resulting from the merge is |L0,2| = |L1,2| = |L0,0|2/qr .

Complexity: O(max(|L0,0|, |L0,2|)).

3. Merge the two previous lists again, to obtain L which contains vectors of size k + ℓ, weight p,
and with the appropriate fixed value for the remaining ℓ− r coordinates of their syndromes.
The size of the resulting list is |L| = |L0,0|4/ql+r .

Complexity: O(max(|L0,2|, |L|)).

4. We perform Step 4 of the general ISD framework to find e1 of weight t− p.

Complexity: O(|L|(n− k − ℓ)(k + ℓ)).

Proposition B.4.1 (BJMM algorithm). The complexity of an iteration of the BJMM algorithm is given
by

CS(n, k, q, p, l, ε) = O(|L|(n− k − ℓ)(k + ℓ) + max(|L0,0|, |L0,2|, |L|) + L0,0)

with

|L0,0| =
(
(k + ℓ)/2

p1/2

)
(q − 1)p1/2 |L0,2| =

(
(k + ℓ)/2

p1/2

)2

(q − 1)p1q−r

|L| =
(
(k + ℓ)/2

p1/2

)4

(q − 1)2p1q−ℓ−r p1 = p/2 + ε

and

R =
∑

ε1+ε2=ε

(
p

p/2− ε1

)(
p/2 + ε1

2ε1

)(
k + ℓ− p

ε2

)
(q − 1)2ε1+ε2

r = log(R)

and the probability of finding a solution is

PS(n, k, q, t, p, l, ε) =
(
k+ℓ
p

)(
n−k−ℓ
t−p

)(
n
t

) ·

((k+ℓ)/2
p1/2

)4
(
k+ℓ
p1

)2 .

Remark B.4.1. The probability of success is obtained as the probability of having an error vector
that has exactly p errors on the chosen Information Set (first fraction) multiplied by the probability
that e1 has p1 errors equally distributed into its two halves, multiplied again by the probability that
e2 has p1 errors equally distributed into its two halves.
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Remark B.4.2. We want to stress the fact that in the case of the MMT and BJMM-like attacks, our
estimations are quite conservative, as we do not take into account the costs implied by the memory
calls. In our range of parameters, they should not be discarded in practice. Indeed, the memory size
is about the size of the biggest lists computed, therefore

M(n, k, q, p, l) ∼ max(|L0,2|, |L1,1|, |L|),

which can be be over 250, and entails an overhead in the computation time. This is often neglected
in the literature.



Appendix C
Proving the Resistance against Linear Test
of the Original VDSD Construction

We put forward a corrected detailed analysis of the resistance of the original rVDSD against
linear tests. Our proof fixes the two errors in [BCGI+20a], at the cost of achieving worse constants,
and being more involved. As before, we study individually the bias induced by the Hi components
against vectors of weight close to 2i. The general proof (Appendix C.1) will nevertheless focus only
on large enough values of i: we assume n = 2i ⩾ 27. The missing cases are handled separately in
Appendix C.2.

Definition C.0.1 (δ-Bad Matrices). LetM ∈ FN×w·2i
2 , build as a concatenation of w matrixMj of

size N × 2i. We say that a blockMj is bad with respect to a vector v ∈ F2N if

wt
(
v⊤ ·Mj

)
= Rl,k /∈

[
δ · 2i, (1− δ) · 2i

]
.

Stated in terms of Zl,k, this condition rewrites to Zl,k ∈
[
(1/2− δ) · 2i, 2i−1

]
.

We let Badδ,v,w be the set of all Mj that are bad. We let Goodδ,v,w denote the complement
of Badδ,v,w. Given vector v, we also denote Bδ,v,w = #Badδ,v,w and Gδ,v,w = #Goodδ,v,w =
w −Bδ,v,w.

C.1 The general proof

We now formally prove Theorem 7.2.2. Let Oi
par(H) be the distribution induced by sampling ei

(as a concatenation of w length-2i vectors) and outputting Hi · ei. A sample from Oi
par(H) can be

further decomposed as
⊕

j⩽w Hi,j ·ei,j where the ei,j are unit vectors. LetDi denote the distribution
of Hi,j · ei,j (these terms are w samples from the same distribution).Let α be a constant. Then,

Lemma C.1.1. If Bδ,v,w ⩽ α · w, then

bias

(
w⊕
i=1

Di

)
⩽

1

2
· ((1− 2δ)(1−α))w.
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Proof. By the piling-up lemma (Lemma 2.2.2),

bias

(
w⊕
i=1

Di

)
⩽ 2(1−α)w−1 ·

(
1

2
− δ
)(1−α)·w

⩽
1

2
· ((1− 2δ)(1−α))w

Lemma C.1.1 provides an upper bound of the bias, which depends on the number of good matrices
and their quality. We now show that the condition Bδ,v ⩽ α · w holds with very high probability:

Lemma C.1.2. For any v ∈ Si,N , there is a constant C such that

Pr [ Bδ,v > α · w ] ⩽ 2−C·2
i·w.

Proof. As in the original proof, we introduce the function Φ:

Φ (X1,1, . . . ,Xl,w) =

w∑
k=1

2i−1 −

∣∣∣∣∣∣wt
 l⊕

j=1

Xj,k

− 2i−1

∣∣∣∣∣∣


= 2i−1 · w −
w∑

k=1

Zl,k.

We want to bound the probability of large bias by a bound on Φ. This is where the first error appeared
in the previous proof.

Lemma C.1.3 (Correction of the first error).

Pr [ Bδ,v ⩾ α · w ] ⩽ Pr
[
Φ(X1,1, . . . ,Xl,w) < γ · w · 2i

]
,

with γ = 1
2 − α(

1
2 − δ).

Proof. We assume that Bδ,v ⩾ α · w. This translates to a lower bound of the sum of the Zl,k:
w∑

k=1

Zl,k ⩾ α · w ·
(
1

2
− δ
)
· 2i,

and finally an upper bound on Φ.

Φ (X1,1, . . . ,Xl,w) ⩽ 2i−1 · w − α · w ·
(
1

2
− δ
)
· 2i = 2i · w ·

(
1

2
− α

(
1

2
− δ
))

.

Setting γ = 1
2 − α(

1
2 − δ) we get Φ(X1,1, . . . ,Xl,w) < γ · w · 2i, which proves that

Pr [ Bδ ⩾ α · w ] ⩽ Pr
[
Φ(X1,1, . . . ,Xl,w) < γ · w · 2i

]
.

It remains now to find an upper bound on the right hand side probability. As in the original
proof, we used the bounded difference inequality. Since Φ is 2-Lipschitz, (this was proved in the
original proof),

Pr [ Φ(X1,1, · · · ,Xl,w) ⩽ E[Φ(X1,1, · · · ,Xl,w)]− t ] ⩽ exp

(
− t2

2lw

)
.
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We finally need a lower bound on E[ϕ(X1,1, · · · ,Xl,w)]. Recall that Φ (X1,1, · · · ,Xl,w) = 2i−1 ·
w −

∑w
k=1 Zl,k, so this reduces to bounding E[Zl,k]. Our main contribution in this analysis is the

proof of the following lemma:

Lemma C.1.4 (Correction of the second error). For all n ∈ N, there exists β < 1/2 such that
E [Zl,k] < β · n.

Proof. We first rewrite E[Zl,k] using the standard fact that E[Z] =
∑

j Pr[Z > j]:

E [Zl,k] = E
[∣∣Rl,k − 2i−1

∣∣] = 2i−1−1∑
j=0

Pr
(∣∣Rl,k − 2i−1

∣∣ > j
)

=
2i−1−1∑
j=0

Pr(Rl,k ⩾ j + 1 + 2i−1) +
2i−1−1∑
j=0

Pr(Rl,k ⩽ 2i−1 − j − 1).

While we can bound Pr
[
Rl,k ⩾ j + 1 + 2i−1

]
+Pr

[
Rl,k ⩽ 2i−1 − j − 1

]
by 1 (for every j the two

events are disjoint), this only proves that E [Zl,k] ⩽ 0.5 · n. Therefore, we are looking for better
bounds on these two probabilities. Both bounds come from the Lemma 2.2.4; we prove each of them
separately below.

Lemma C.1.5. Let 1
2 < p < 1. Let θ such that (1− p) · n = µ · (1− θ). Then,

Pr [ Rl,k ⩾ pn ] ⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
.

Proof. Let E be the random variable equal to the number of empty bins. Remark that when E > x
then Rl,k < 2i − x. Then, it appears necessarily that

Pr [ Rl,k ⩾ pn ] ⩽ Pr[E ⩽ (1− p)n].

We can then use lemma 2.2.4, and establish the following

Pr [ Rl,k ⩾ pn ] ⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
,

where we chose θ is chosen such that (1−p)n = µ · (1−θ). This proves the first bound we need.

Let’s focus now on the second bound.

Lemma C.1.6. Let p such that 1
2 < p < 1. Let θ such that (1− p) · n = n− µ(θ + 1)− l

2 . Then

Pr [ Rl,k ⩽ (1− p)n ] ⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
.

Proof. First, we state a simple but interesting result:

Lemma C.1.7. Let U be the number of bins that contain exactly one ball. Then

U/2 ⩾ n− E − l

2
.
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Proof. If there are E bins empty, and U bins with one ball only, then the remaining l − U balls are
contained in at most (l − U)/2 bins, and so

E + U + (l − U)/2 ⩾
∑
i

number of bins containing i balls = n.

and thus, U/2 ⩾ n− E − l
2 .

From there using once again lemma 2.2.4

Pr [ E ⩾ µ(θ + 1) ] ⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)

Pr

[
n− E − l

2
⩽ n− µ(θ + 1)− l

2

]
⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
.

We obtain

Pr

[
U/2 ⩽ n− µ(θ + 1)− l

2

]
⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
,

because n− E − l/2 ⩽ U/2. Finally from U/2 ⩽ Rl,k we get the desired bound

Pr

[
Rl,k ⩽ n− µ(θ + 1)− l

2

]
⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)

Pr [ Rl,k ⩽ (1− p)n ] ⩽ 2 exp

(
−
θ2µ2(n− 1

2)

n2 − µ2

)
,

by choosing θ such that (1− p) · n = n− µ(θ+1)− l
2 . This proves the second bound we need.

Now we have upper bounds for Pr [ Rl,k ⩾ pn ] and Pr [ Rl,k ⩽ (1− p)n ] for 1/2 < p < 1. It
remains to carefully choose when to start applying these bounds, i.e., when these bounds become
better than the naive Pr [ Rl,k ⩾ pn ] + Pr [ Rl,k ⩽ (1− p)n ] ⩽ 1. Thus we want to find the lowest
n for which there exists a proportion 1/2 ⩽ p ⩽ 1 such that the following equation stands

Pr [ Rl,k ⩾ pn ] + Pr [ Rl,k ⩽ (1− p)n ] < 1. (C.1)

Remark that we have the same formula for both bounds, but with different values for θ. Let us call
them θ1 and θ2. For the first one (lemma C.1.5) we we should have θ1 such that (1−p)·n = µ·(1−θ1).
For the second one (lemma C.1.6) should have a θ2 such that (1− p) · n = n− µ(θ2 + 1)− l

2 . We
remark that θ1 > θ2 , thus the value of n we are looking for is coming the second inequality. The
smallest n such that there exists 1/2 < p < 1 verifying Pr[ Rl,k ⩽ (1− p)n ] < 1 is n = 27. Then,
using Table C.1 we can conclude that n = 27 is enough to find a proportion p, as we wanted.
From these calculations we can also show that β < 0.47, when n > 27.

At this stage, we have shown that E[ ϕ(X1,1, . . . , Xl,w) ] ⩾ 2i · w · (1/2− β), for some positive
constant β < 0.5. Therefore,

Pr
[
ϕ(X1,1, . . . , Xl,w) ⩽ 2i · w · (1/2− β)− t

]
⩽ exp

(
− t2

2lw

)
.
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Table C.1 – Rounded value of 2 exp
(
− θ2µ2(n− 1

2
)

n2−µ2

)
; for the two different θ, with n = 128 and l = n.

1− p 0.92 0.94 0.96 0.98

θ = θ1 5× 10−5 2× 10−6 3× 10−7 4× 10−8

θ = θ2 1.31 0.90 0.55 0.3

Let us define ζ = t/(2i · w). Then, the condition 2i · w · (12 − β) − t = 2i · w · γ rewrites to
γ = (1/2 − β) − ζ = 1/2 − α(1/2 − δ). Let us pick a concrete choice of value for n ⩾ 27: set
α = 48/49, δ = 1/100. This gives us a value for γ = 0.02. As soon as n ⩾ 27, we know that
β ⩽ 0.47, and thus ζ ⩾ 0.01. Hence, there exists a constant C such that

Pr [ Bδ,v ⩾ α · w ] ⩽ 2−C·2
i·w.

This concludes the proof of Lemma C.1.2.

The end of the proof is the same as in the original proof, up to handling separately the case of
small i’s. The total number of vectors v ∈ Si,N can be bounded by

2i∑
l=2i−1

(
N

l

)
⩽ (2i − 2i−1) · N2i

(2i−1)!
⩽ 2D·2

i
.

Hence, choosing constant such that Cw/2 > D, and setting a = C/2, by a union bound, we have

Pr [ ∃V ∈ Si,N , Bδ,v ⩾ α · w ] ⩽ 2D·2
i · 2−C·2i·w ⩽ 2−a·w.

We eventually use a union bound again on all values of i ⩽ D:

Pr [ ∃i ⩽ D,v ∈ Si,N , Bδ,v ⩾ α · w ] ⩽ D · 2−a·w,
which, using Lemma C.1.1, rewrites to

Pr

[
existsi ⩽ D,v ∈ Si,N , biasv

 w⊕
j=1

Dj

 ⩾
1

2
· ((1 − 2δ)(1−α))w

]
⩽ D · 2−a·w.

C.2 Handling the Corner Cases
In the proof, we have made two assumptions: l ∈ [2i−1, 2i], and n = 2i ⩾ 27 (recall that l is the

Hamming weight of the test vector). Therefore, there is some corner cases that are not covered by the
proof, the cases when the adversary attempts an attack with a vector of hamming weight l ∈ [1, 63].

C.2.1 Case 1: l is odd.

We focus on the first submatrix of our matrix H. The matrix has the following shape:

H1 =

u1
1,1 · · ·

2 columns︷︸︸︷
u1
1,w

...
...

...
u1
N,1 · · · u1

N,w

 ,
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where (u1
k,j)1⩽k⩽N,1⩽j⩽w are unit vectors over F2

2. Each row uniquely corresponds to a uniform
w-bit vector (we say that it encodes this vector), where each bit indicates the position of the 1 in the
2-bit vector u1

k,j (0 being left, and 1 being right). We denote the w-bit string encoded by the i-th row
by xi. Recall that e1 is distributed as a row of H1. We let K denote the string obtained by flipping
all bits in the w-bit string that encodes e1. Observe that the inner product between the i-th row of
H1 and e1 is equal to

⊕w
j=1(xi,j ⊕Kj). Given v, the vector v ·H1 is the XOR of the l rows of H1

corresponding to nonzero entries in v. Therefore, whenever l is odd, the value v ·H1 · e1 is of the
form f(H1) ⊕ (

⊕w
j=1Kj), where f is some appropriate function. That is, value of v ·H1 · e1 is

masked by a uniformly random bit equal to (
⊕w

j=1Kj): it is therefore perfectly unbiased.

C.2.2 Case 2: l is even.

Let now focus on the second submatrix H2 of our matrix H. It has the following shape:

H2 =

u2
1,1 · · ·

4 columns︷︸︸︷
u2
1,w

...
...

...
u2
N,1 · · · u2

N,w

 ,
where (u2

k,j)1⩽k⩽N,1⩽j⩽w are unit vector over F4
2. This time, each row can be seen as encoding a

pair of w-bits vector: the two bits at position i in both vectors encode together the position of the 1
in the unit length-four vector u2

k,j , in binary. For the i-th line, let us denote these vectors as xi,0

and xi,1. For the noise vector e1, who has the same structure, we also define two vectors K0 and
K1, as before by flipping all bits of the two vectors encoded by e2. Now, given a test vector v with
even Hamming weight l, the value v ·H2 · e2 is equal to

⊕
i∈S(xi,0 ⊕K0) · (xi,1 ⊕K1), where S

is the subset of nonzero entries in v. Let g(x0,x1) =
⊕w

j=1 xi,0,j · xi,1,j . With this notation, we can
rewrite v ·H2 · e2 as

⊕
i∈S

g(xi,0,xi,1)⊕

〈⊕
i∈S

xi,0,K1

〉
⊕

〈⊕
i∈S

xi,1,K0

〉
.

The leftmost term is independent of the secret noise vector. The above equation implies that if⊕
i∈S xi,0 is not the all zero vector, then the above value is additively masked by one of the entries

in K1, which is a uniformly random bit; hence, it is uniformly distributed (the above is a sufficient
condition; the same condition with respect to xi,1 and K0 would also suffice). Furthermore, we
can bound the probability that

⊕
i∈S xi,0 = 0: let us call E0 this event. For any fixed choice of the

size-l subset S, the probability that
⊕

i∈S xi,0 = 0 holds over a random choice of the vectors xi,0 is
exactly 2−w. By a straightforward union bound over all subsets S of size l,

Pr[E0] ⩽ 2−w ·
(
N

l

)
⩽ 2−w ·N l ⩽ 2l·D−w,

where N = 2D is the number of rows in H. Whenever l is a constant (recall that we assume here
l ⩽ 63), the above probability is bounded by 2−α0w as soon as w > α1D for an appropriate choice
of the constants α0, α1 (a quick calculation shows that these constants are much better than the ones
involved in the case of large l, hence the final constants involved in our theorem remain the same as
the constants achieved in the previous proof). This concludes the analysis of the corner cases.



Appendix D
Script for the optimization of β

Hereinafter the script written in python used to obtain simulated value of β. The number of
simulations is chosen in order to reach a 99% confidence interval.
import math
import random
import s t a t i s t i c s

n = 2048 # Number o f b i n s
l = 1024 # Number o f b a l l s
T = 100000 # Number o f s i m u l a t i o n s
L i s t _ Z = [ ]

for j in range ( T ) :
# R ep ea t f o r each s imu l a t i o n
Bins = [ 0 for k in range ( n ) ]
count_odd = 0
#We throw t h e l b a l l s
for k in range ( l ) :

# Cho i c e o f t h e b i n among t h e n
r = random . r a n d i n t ( 0 , n −1 )
count_odd += ( 1 −2 ∗ B ins [ r ] )
B ins [ r ] = ( B ins [ r ] +1 ) % 2

L i s t _ Z . append ( abs ( 1 / 2 − count_odd / n ) )
#Z = n / 2 − E [ R ] , and R = coun t_odd / n .

mean_Z = s t a t i s t i c s . mean ( L i s t _ Z )
# To d e t e rm i n e a c o n f i d e n c e i n t e r v a l
s tdev_Z = s t a t i s t i c s . s t d e v ( L i s t _ Z )

print ( " The ␣ c o n f i d e n c e ␣ i n t e r v a l ␣ a t ␣ 99% ␣ i s
: ␣ [ { } ␣ − ␣ { } , ␣ { } ␣ + ␣ { } ] " . format (
mean_Z , 3 ∗ s tdev_Z / math . s q r t ( T ) ,
mean_Z , 3 ∗ s tdev_Z / math . s q r t ( T ) ) )



Appendix E
Script for the optimization of i∗ and wi

Hereinafter the script written in python used to obtain the couple (i∗, wi) reaching the best key
size and number of PCF evaluations per second.
import math
import random
import s t a t i s t i c s

def g e t B e t a ( b e t a L i s t , i ) :
# R e t u rn t h e e l emen t a t i n d e x i −2 ;
# o r t h e l a s t i t em i f i i s s u p e r i o r than t h e s i z e o f t h e l i s t .
i f i −1> len ( b e t a L i s t ) :
return b e t a L i s t [ len ( b e t a L i s t ) −1 ]
e l se :
return b e t a L i s t [ i −2]

def H( x ) :
# B ina ry e n t r o p y f u n c t i o n
return −x ∗ math . l o g ( x , 2 ) − (1 − x ) ∗ math . l o g (1 −x , 2 )

def f i r s t B o u n d (D , l e v e l , i , l , p r e c i s i o n , b a s i s ) :
# R e t u rn t h e c l o s e s l owe r bound on w ∗ z e t a ^ 2 . P r e c i s i o n i s t h e number
# o f d i g i t a f t e r t h e d e c ima l p o i n t +1
for w z e t a c a r r e in range ( 1 ∗ 1 0 ∗ ∗ ( p r e c i s i o n ) , 5 0 0 0 0 0 0 ∗ 1 0 ∗ ∗ ( p r e c i s i o n ) ) :
# R e c u r s i o n i n o r d e r t o f i n d t h e w z e t a c a r r e
c = ( math . l o g ( b a s i s ) ∗D∗ l − ( ( ( b a s i s ∗ ∗ ( 2 ∗ i − 1 ) ) / l ) ∗
( w z e t a c a r r e / ( 1 0 ∗ ∗ ( p r e c i s i o n + 1 ) ) ) ) ) / math . l o g ( 2 )
i f ( c < l e v e l ) : # f i r s t w ∗ z e t a ^2 i s b e l l ow t h e r e q u i r em en t l e v e l .

return w z e t a c a r r e / 1 0 ∗ ∗ ( p r e c i s i o n +1 )
return w z e t a c a r r e / 1 0 ∗ ∗ ( p r e c i s i o n +1 )

def secondBound ( be ta , wzcarre , l e v e l , p r e c i s i o n ) :
# R e t u rn t h e v a l u e z e t a . The p r e c i s i o n l e v e l i n d i c a t e t h e number o f d i g i t a f t e r
# t h e d e c ima l p o i n t +2
for z e t a in range ( 5 0 ∗ 1 0 ∗ ∗ ( p r e c i s i o n ) , 1 ∗ 1 0 ∗ ∗ ( p r e c i s i o n ) , − 1 ) :
c = math . l o g ( 2 ∗ ( b e t a +( z e t a / 1 0 ∗ ∗ ( p r e c i s i o n + 2 ) ) ) ) ∗
( wzcar re / ( z e t a / 1 0 ∗ ∗ ( p r e c i s i o n + 2 ) ) ∗ ∗ 2 ) / math . l o g ( 2 )
i f ( c < l e v e l ) : # F i r s t z e t a b e l l ow t h e r e q u i r em en t l e v e l

return ( z e t a / 1 0 ∗ ∗ ( p r e c i s i o n + 2 ) )
return ( z e t a / 1 0 ∗ ∗ ( p r e c i s i o n + 2 ) )

def f indw (D , l e v e l 1 , l e v e l 2 , i s t a r , p r e c i s i o n , be ta , b ) :
# F i n d i n g t h e v a r i a b l e w wi th :
# D : number o f b l o c s
# L e v e l 1 and l e v e l 2 : R e qu i r e d s e c u r i t y l e v e l s o f t h e p r o b a b i l i t y and o f t h e b i a s
# i s t a r : b l o c s we a r e on
# p r e c i s i o n : l e v e l o f p r e c i s i o n f o r w z e t a ^2 and ze t a ,
# i n o r d e r t o be c l o s e t o t h e t r u e w .
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# b e t a : v a l u e o f b e t a i n t h e c a s e l = b^ i s t a r
# number o f s amp l e s such t h a t b^D .
w z e t a c a r r e = f i r s t B o u n d (D , l e v e l 1 , i s t a r , b ∗ ∗ i s t a r , p r e c i s i o n , b )
z e t a = secondBound ( beta , w z e t a c a r r e , l e v e l 2 , p r e c i s i o n )
return math . c e i l ( w z e t a c a r r e / z e t a ∗ ∗ 2 ) # e qua l t o w .

def s i z e R ( i s t a r , D , b ) :
# F u n c t i o n comput ing t h e s i z e o f t h e b l o c R
# r e p l a c i n g t h e i s t a r −1 f i r s t b l o c s among D b l o c s ;
# f o r a number o f s amp l e s e qua l t o b^D .
d = ( b ) ∗ ∗ ( i s t a r −1) −1
return round (H( d / ( b ) ∗ ∗D) ∗ ( b ) ∗ ∗D + 1 2 8 )

def t a i l l e s e e d ( t r , i s t a r , D , lbd , b , b e t a L i s t , l e v e l 1 , l e v e l 2 , p r e c i s i o n ) :
# Computa t i on o f t h e s i z e o f t h e s e e d f o r c o n s t r u c t i o n wi th :
# t r : s i z e o f t h e b l o c R r e p l a c i n g t h e i s t a r −1 f i r s t b l o c s .
# D : number o f b l o c s
# L e v e l 1 and l e v e l 2 : R e qu i r e d s e c u r i t y l e v e l s o f t h e p r o b a b i l i t y and o f t h e b i a s
# i s t a r : b l o c s we a r e on
# p r e c i s i o n : l e v e l o f p r e c i s i o n f o r w z e t a ^2 and ze t a ,
# i n o r d e r t o be c l o s e t o t h e t r u e w .
# b e t a : v a l u e o f b e t a i n t h e c a s e l = b^ i s t a r
# number o f s amp l e s such t h a t b^D .
# l b d : s e c u r i t y p a r ame t e r s o f DPF ( = 1 2 8 ) .
# b e t a L i s t : l i s t o f b e t a d ep end ing on t h e s i z e o f t h e b l o c s .
c = 0
for i in range ( i s t a r , D+ 1 ) :
b e t a = g e t B e t a ( b e t a L i s t , i )
c += f indw (D , l e v e l 1 , l e v e l 2 , i , p r e c i s i o n , be ta , b ) ∗ ( i ∗ ( l b d + 2 ) + 2 ∗ l b d )
# s i z e o f t h e i s t a r . . . D b l o c s .
return round ( ( c + t r ) / 8 0 0 0 0 0 0 , 2 ) # t r a n s f o rm a t i o n i n MB

def computa t ionCos t ( t r , D , i s t a r , b , b e t a i L i s t , l e v e l 1 , l e v e l 2 , p r e c i s i o n ) :
# Computa t i on o f t h e s i z e o f t h e s e e d f o r c o n s t r u c t i o n wi th :
# t r : s i z e o f t h e b l o c R r e p l a c i n g t h e i s t a r −1 f i r s t b l o c s .
# D : number o f b l o c s
# L e v e l 1 and l e v e l 2 : R e qu i r e d s e c u r i t y l e v e l s o f t h e p r o b a b i l i t y and o f t h e b i a s
# i s t a r : b l o c s we a r e on
# p r e c i s i o n : l e v e l o f p r e c i s i o n f o r w z e t a ^2 and ze t a ,
# i n o r d e r t o be c l o s e t o t h e t r u e w .
# b e t a : v a l u e o f b e t a i n t h e c a s e l = b^ i s t a r
# number o f s amp l e s such t h a t b^D .
# b e t a L i s t : l i s t o f b e t a d ep end ing on t h e s i z e o f t h e b l o c s .
c = 0
for i in range ( i s t a r , D+ 1 ) :
b e t a = g e t B e t a ( b e t a i L i s t , i )
c += f indw (D , l e v e l 1 , l e v e l 2 , i , p r e c i s i o n , be ta , b ) ∗ ( i +1 )
c y c l e s 1 = 2 ∗ c ∗ 1 6 ∗ 1 . 3 # number o f c y c l e f o r t h e c ompu t a t i on o f
c y c l e 2 = t r / 8 ∗ 1 . 3
# number o f c y c l e f o r t h e c ompu t a t i on o f t h e s c a l a r p r o d u c t o f s i z e r
p c f E v a l p e r S = round ( 3 8 0 0 0 0 0 0 0 0 / ( c y c l e s 1 + c y c l e 2 ) )
# t r a n s f o rm a t i o n i n number o f PCF e v a l u a t i o n p e r s e c o nd .
return p c f E v a l p e r S

T = 100 # number o f r e p e t i t i o n f o r t h e c ompu t a t i on o f t h e v a l u e s b e t a
#− f a s t e r i f T i s sm a l l e r bu t t h e r e s u l t might be a t i n y b i t d i f f e r e n t
l e v e l 1 = −80 # S e c u r i t y r e q u i r em e n t s c o n c e r n i n g t h e p r o b a b i l i t y .
l e v e l 2 = −80 # S e c u r i t y r e q u i r em e n t s c o n c e r n i n g t h e b i a s .
p r e c i s i o n = 2 # p r e c i s i o n : l e v e l o f p r e c i s i o n f o r w z e t a ^2
# and ze ta , i n o r d e r t o be c l o s e t o t h e t r u e w .
D1 = 30 # O r i g i n a l v a l u e o f D = 30 ; b e c a u s e we wanted 2^30 s amp l e s .
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for e in [ 3 ] : # [ 1 , 2 , 3 , 5 , 6 , 1 0 ] :
b = 2 ∗ ∗ e # 2^ e f o r s i z e o f a s u b b l o c s .
D = math . c e i l ( math . l o g ( 2 ) ∗ D1 / math . l o g ( b ) )
# Computa t i on o f t h e new number o f b l o c s r e q u i r e d ,
# such t h a t t h e number o f s amp l e s g e n e r a t e d i s 2^30 = b^D .
b e t a L i s t = [ ]
for i s t a r in range ( 2 ,D / / 2 ) :
# We compute t h e v a l u e s o f b e t a d ep end ing on t h e b l o c s we a r e i n .
#We do no t go u n t i l t h e end b e c a u s e i t would t a k e
# t o much t ime and s t o p when b e t a c o n v e r g e s .

n = b ∗ ∗ i s t a r
l = n
L i s t _ Z = [ ]
for j in range ( T ) :
# R ep ea t f o r each s imu l a t i o n
Bins = [ 0 for k in range ( n ) ]
count_odd = 0
#We throw t h e l b a l l s
for k in range ( l ) :

# Cho i c e o f t h e b i n among t h e n
r = random . r a n d i n t ( 0 , n −1 )
count_odd += ( 1 −2 ∗ B ins [ r ] )
B ins [ r ] = ( B ins [ r ] +1 ) % 2

L i s t _ Z . append ( abs ( 1 / 2 − count_odd / n ) )
#Z = n / 2 − E [ R ] , and R = coun t_odd / n .
b e t a = s t a t i s t i c s . mean ( L i s t _ Z )
b e t a L i s t . append ( b e t a )

for i s t a r in range ( 2 ,D+ 1 ) : # F o r a l l i s t a r i n be tween 2 and D
# we compute and d i s p l a y t h e s e e d s i z e and t h e number o f PCF e v a l u a t i o n p e r s e c o nd .

t r = s i z e R ( i s t a r , D , b )
print ( "D ␣ = ␣ { } , ␣ b ␣ = ␣ { } , ␣ b e t a ␣ used ␣ = ␣ { } , ␣ t a r g e t ␣ l e v e l 1 ␣ = ␣ { } , ␣ s i z e ␣ o f ␣ R ␣ = ␣ { } " . format (

D , b , g e t B e t a ( b e t a L i s t , i s t a r ) , l e v e l 1 −math . l o g ( ( D− i s t a r + 1 ) ∗ ( b ∗ ∗ ( i s t a r − 1 ) ) , 2 ) , t r ) )
print ( " " )
print ( " i ^ ∗ ␣ = ␣ { } , ␣w( i ^ ∗ ) ␣ = ␣ { } , ␣ s eed ␣ s i z e ␣ = ␣ { } ,

␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ PCF ␣ e v a l u a t i o n s ␣ per ␣ second ␣ = ␣ { } " . format (
i s t a r , f indw (D , l e v e l 1 −math . l o g ( ( D− i s t a r + 1 ) ∗ ( b ∗ ∗ ( i s t a r − 1 ) ) , 2 ) ,
l e v e l 2 , i s t a r , 3 , g e t B e t a ( b e t a L i s t , i s t a r ) , b ) ,
t a i l l e s e e d ( t r , i s t a r , D, 1 2 8 , b , b e t a L i s t , l e v e l 1 , l e v e l 2 , p r e c i s i o n ) ,
computa t ionCos t ( t r , D , i s t a r , b , b e t a L i s t , l e v e l 1 , l e v e l 2 , p r e c i s i o n ) ) )
print ( " ␣ " )
print ( " ␣ " )
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